Age-dependent size effect and fracture characteristics of ultra-high performance concrete

被引:49
|
作者
Wan-Wendner, Lin [1 ]
Wan-Wendner, Roman [2 ]
Cusatis, Gianluca [1 ]
机构
[1] Northwestern Univ, Dept Civil & Environm Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Univ Nat Resources & Life Sci BOKU, Dept Civil Engn & Nat Hazards, Christian Doppler Lab LiCRoFast, Peter Jordan Str 82, A-1190 Vienna, Austria
来源
基金
美国国家科学基金会;
关键词
UHPC; Aging; Size effect; Cohesive crack analysis; Fracture energy; Tensile characteristic length; CHEMO-MECHANICAL MODEL; COHESIVE CRACK; HYDRATION; COUPLINGS; LAW;
D O I
10.1016/j.cemconcomp.2017.09.010
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents an investigation of the age-dependent size effect and fracture characteristics of ultra-high performance concrete (UHPC). The study is based on a unique set of experimental data connecting aging tests for two curing protocols of one size and size effect tests of one age. Both aging and size effect studies are performed on notched three-point bending tests. Experimental data are augmented by state-of-the-art simulations employing a recently developed discrete early-age computational framework. The framework is constructed by coupling a hygro-thermo-chemical (HTC) model and the Lattice Discrete Particle Model (LDPM) through a set of aging functions. The HTC component allows taking into account variable curing conditions and predicts the maturity of concrete. The mechanical component, LDPM, simulates the failure behavior of concrete at the length scale of major heterogeneities. After careful calibration and validation, the mesoscale HTC-LDPM model is uniquely posed to perform predictive simulations. The ultimate flexural strengths from experiments and simulations are analyzed by the cohesive size effect curves (CSEC) method, and the classical size effect law (SEL). The fracture energies obtained by LDPM, CSEC, SEL, and cohesive crack analyses are compared, and an aging formulation for fracture properties is proposed. Based on experiments, simulations, and size-effect analyses, the age dependence of size effect and the robustness of analytical-size effect methods are evaluated. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 82
页数:16
相关论文
共 50 条
  • [41] Design and properties of ultra-high performance concrete
    Shi, Caijun
    Wu, Zemei
    Wang, Dehui
    Wu, Linmei
    CONSTRUCTION MATERIALS AND STRUCTURES, 2014, : 86 - 98
  • [42] Shear behavior of ultra-high performance concrete
    Pourbaba, Masoud
    Joghataie, Abdolreza
    Mirmiran, Amir
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 183 : 554 - 564
  • [43] Shear Strength of Ultra-High Performance Concrete
    Wang X.
    Zhou H.
    Wang H.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (08): : 2190 - 2195
  • [44] Development of sustainable ultra-high performance concrete
    Zhang, Jisong
    Zhao, Yinghua
    3RD INTERNATIONAL CONFERENCE ON ENERGY MATERIALS AND ENVIRONMENT ENGINEERING, 2017, 61
  • [45] Durability of ultra-high performance concrete - A review
    Li, Junquan
    Wu, Zemei
    Shi, Caijun
    Yuan, Qiang
    Zhang, Zuhua
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 255
  • [46] Innovative ultra-high performance concrete structures
    Parsekian, G. A.
    Shrive, N. G.
    Brown, T. G.
    Kroman, J.
    Seibert, P. J.
    Perry, V. H.
    Boucher, A.
    TAILOR MADE CONCRETE STRUCTURES: NEW SOLUTIONS FOR OUR SOCIETY, 2008, : 93 - 93
  • [47] Ultra-high performance concrete - properties and technology
    Zdeb, T.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2013, 61 (01) : 183 - 193
  • [48] ULTRA-HIGH STRENGTH PERFORMANCE CONCRETE PROPERTIES
    Corbu, Ofelia
    Magureanu, Cornelia
    Moldovan, Dumitru
    Szilagyi, Henriette
    FIB SYMPOSIUM PRAGUE 2011: CONCRETE ENGINEERING FOR EXCELLENCE AND EFFICIENCY, VOLS 1 AND 2, 2011, : 495 - 498
  • [49] Effect of steel fibers on the performance of an economical ultra-high strength concrete
    Nguyen, Tan-Trac
    Thai, Huu-Tai
    Ngo, Tuan
    STRUCTURAL CONCRETE, 2023, 24 (02) : 2327 - 2341
  • [50] Scale Effect of Cubic Compressive Strength of Ultra-high Performance Concrete
    Su, Jie
    Liu, Wei
    Shi, Caijun
    Fang, Zhi
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (02): : 305 - 311