Age-dependent size effect and fracture characteristics of ultra-high performance concrete

被引:49
|
作者
Wan-Wendner, Lin [1 ]
Wan-Wendner, Roman [2 ]
Cusatis, Gianluca [1 ]
机构
[1] Northwestern Univ, Dept Civil & Environm Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Univ Nat Resources & Life Sci BOKU, Dept Civil Engn & Nat Hazards, Christian Doppler Lab LiCRoFast, Peter Jordan Str 82, A-1190 Vienna, Austria
来源
基金
美国国家科学基金会;
关键词
UHPC; Aging; Size effect; Cohesive crack analysis; Fracture energy; Tensile characteristic length; CHEMO-MECHANICAL MODEL; COHESIVE CRACK; HYDRATION; COUPLINGS; LAW;
D O I
10.1016/j.cemconcomp.2017.09.010
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents an investigation of the age-dependent size effect and fracture characteristics of ultra-high performance concrete (UHPC). The study is based on a unique set of experimental data connecting aging tests for two curing protocols of one size and size effect tests of one age. Both aging and size effect studies are performed on notched three-point bending tests. Experimental data are augmented by state-of-the-art simulations employing a recently developed discrete early-age computational framework. The framework is constructed by coupling a hygro-thermo-chemical (HTC) model and the Lattice Discrete Particle Model (LDPM) through a set of aging functions. The HTC component allows taking into account variable curing conditions and predicts the maturity of concrete. The mechanical component, LDPM, simulates the failure behavior of concrete at the length scale of major heterogeneities. After careful calibration and validation, the mesoscale HTC-LDPM model is uniquely posed to perform predictive simulations. The ultimate flexural strengths from experiments and simulations are analyzed by the cohesive size effect curves (CSEC) method, and the classical size effect law (SEL). The fracture energies obtained by LDPM, CSEC, SEL, and cohesive crack analyses are compared, and an aging formulation for fracture properties is proposed. Based on experiments, simulations, and size-effect analyses, the age dependence of size effect and the robustness of analytical-size effect methods are evaluated. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 82
页数:16
相关论文
共 50 条
  • [21] Effect of Casting Position on Mechanical Performance of Ultra-High Performance Concrete
    Zhao, Sujing
    Bo, Yiheng
    MATERIALS, 2022, 15 (02)
  • [22] Ultra-high performance concrete versus ultra-high performance geopolymer concrete: Mechanical performance, microstructure, and ecological assessment
    Abdellatief, Mohamed
    Abd Elrahman, Mohamed
    Abadel, Aref A.
    Wasim, Muhammad
    Tahwia, Ahmed
    JOURNAL OF BUILDING ENGINEERING, 2023, 79
  • [23] Secondary curing effect on the hydration of ultra-high performance concrete
    Kang, Hyunuk
    Moon, Juhyuk
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 298
  • [24] Effect of slag cement on the properties of ultra-high performance concrete
    Liu, Zhichao
    El-Tawil, Sherif
    Hansen, Will
    Wang, Fazhou
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 190 : 830 - 837
  • [25] Effect of temperature on mechanical properties of ultra-high performance concrete
    Banerji, Srishti
    Kodur, Venkatesh
    FIRE AND MATERIALS, 2022, 46 (01) : 287 - 301
  • [26] Secondary curing effect on the hydration of ultra-high performance concrete
    Kang, Hyunuk
    Moon, Juhyuk
    Construction and Building Materials, 2021, 298
  • [27] Effect of drying conditions on autogenous shrinkage in ultra-high performance concrete at early-age
    A. M. Soliman
    M. L. Nehdi
    Materials and Structures, 2011, 44 : 879 - 899
  • [28] Scale Effect of Flexural Strength on Ultra-high Performance Concrete
    Su J.
    Shi C.
    Qin H.
    Zhang X.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2020, 48 (11): : 1740 - 1746
  • [29] Effect of drying conditions on autogenous shrinkage in ultra-high performance concrete at early-age
    Soliman, A. M.
    Nehdi, M. L.
    MATERIALS AND STRUCTURES, 2011, 44 (05) : 879 - 899
  • [30] Fracture studies of Ultra-High Performance Concrete using dynamic Brazilian tests
    Khosravani, Mohammad Reza
    Silani, Mohammad
    Weinberg, Kerstin
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2018, 93 : 302 - 310