2.5D CONVOLUTION FOR RGB-D SEMANTIC SEGMENTATION

被引:11
|
作者
Xing, Yajie [1 ]
Wang, Jingbo [1 ]
Chen, Xiaokang [1 ]
Zeng, Gang [1 ]
机构
[1] Peking Univ, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
RGB-D Semantic Segmentation; Convoutional Neural Networks; Geometry in CNN;
D O I
10.1109/icip.2019.8803757
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Convolutional neural networks (CNN) have achieved great success in RGB semantic segmentation. RGB-D images provide additional depth information, which can improve segmentation performance. To take full advantages of the 3D geometry relations provided by RGB-D images, in this paper, we propose 2.5D convolution, which mimics one 3D convolution kernel by several masked 2D convolution kernels. Our 2.5D convolution can effectively process spatial relations between pixels in a manner similar to 3D convolution while still sampling pixels on 2D plane, and thus saves computational cost. And it can be seamlessly incorporated into pretrained CNNs. Experiments on two challenging RGB-D semantic segmentation benchmarks NYUDv2 and SUN-RGBD validate the effectiveness of our approach.
引用
收藏
页码:1410 / 1414
页数:5
相关论文
共 50 条
  • [21] Pixel Difference Convolutional Network for RGB-D Semantic Segmentation
    Yang, Jun
    Bai, Lizhi
    Sun, Yaoru
    Tian, Chunqi
    Mao, Maoyu
    Wang, Guorun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1481 - 1492
  • [22] Semantic segmentation with Recurrent Neural Networks on RGB-D videos
    Gao, Chuan
    Wang, Weihong
    Chen, Mingxi
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 1203 - 1207
  • [23] Evaluation of Multimodal Semantic Segmentation using RGB-D Data
    Hu, Jiesi
    Zhao, Ganning
    You, Suya
    Kuo, C. C. Jay
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS III, 2021, 11746
  • [24] Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis
    Seichter, Daniel
    Koehler, Mona
    Lewandowski, Benjamin
    Wengefeld, Tim
    Gross, Horst-Michael
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 13525 - 13531
  • [25] A Fusion Network for Semantic Segmentation Using RGB-D Data
    Yuan, Jiahui
    Zhang, Kun
    Xia, Yifan
    Qi, Lin
    Dong, Junyu
    NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [26] A RGB-D Vision based Indoor SLAM using 2.5D Map by Multiple UAVs
    Kang, Hyunseung
    Ku, Kyomun
    Shim, Jaehong
    2021 21ST INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2021), 2021, : 1624 - 1627
  • [27] Salient Semantic Segmentation Based on RGB-D Camera for Robot Semantic Mapping
    Hu, Lihe
    Zhang, Yi
    Wang, Yang
    Yang, Huan
    Tan, Shuyi
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [28] 2.5D Cascaded Semantic Segmentation for Kidney Tumor Cyst
    Chen, Zhiwei
    Liu, Hanqiang
    KIDNEY AND KIDNEY TUMOR SEGMENTATION, KITS 2021, 2022, 13168 : 28 - 34
  • [29] Learning to Align Semantic Segmentation and 2.5D Maps for Geolocalization
    Armagan, Anil
    Hirzer, Martin
    Roth, Peter M.
    Lepetit, Vincent
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4590 - 4597
  • [30] Multimodal Neural Networks: RGB-D for Semantic Segmentation and Object Detection
    Schneider, Lukas
    Jasch, Manuel
    Froehlich, Bjoern
    Weber, Thomas
    Franke, Uwe
    Pollefeys, Marc
    Raetsch, Matthias
    IMAGE ANALYSIS, SCIA 2017, PT I, 2017, 10269 : 98 - 109