2.5D CONVOLUTION FOR RGB-D SEMANTIC SEGMENTATION

被引:11
|
作者
Xing, Yajie [1 ]
Wang, Jingbo [1 ]
Chen, Xiaokang [1 ]
Zeng, Gang [1 ]
机构
[1] Peking Univ, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
RGB-D Semantic Segmentation; Convoutional Neural Networks; Geometry in CNN;
D O I
10.1109/icip.2019.8803757
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Convolutional neural networks (CNN) have achieved great success in RGB semantic segmentation. RGB-D images provide additional depth information, which can improve segmentation performance. To take full advantages of the 3D geometry relations provided by RGB-D images, in this paper, we propose 2.5D convolution, which mimics one 3D convolution kernel by several masked 2D convolution kernels. Our 2.5D convolution can effectively process spatial relations between pixels in a manner similar to 3D convolution while still sampling pixels on 2D plane, and thus saves computational cost. And it can be seamlessly incorporated into pretrained CNNs. Experiments on two challenging RGB-D semantic segmentation benchmarks NYUDv2 and SUN-RGBD validate the effectiveness of our approach.
引用
收藏
页码:1410 / 1414
页数:5
相关论文
共 50 条
  • [11] Cascading context enhancement network for RGB-D semantic segmentation
    Xu Tang
    Zejun Zhang
    Yan Meng
    Jianxiao Xie
    Changbing Tang
    Weichuan Zhang
    Multimedia Tools and Applications, 2025, 84 (9) : 5985 - 6003
  • [12] Automatic Network Architecture Search for RGB-D Semantic Segmentation
    Wang, Wenna
    Zhuo, Tao
    Zhang, Xiuwei
    Sun, Mingjun
    Yin, Hanlin
    Xing, Yinghui
    Zhang, Yanning
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3777 - 3786
  • [13] Semantic Progressive Guidance Network for RGB-D Mirror Segmentation
    Li, Chao
    Zhou, Wujie
    Zhou, Xi
    Yan, Weiqing
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2780 - 2784
  • [14] Cascaded Feature Network for Semantic Segmentation of RGB-D Images
    Lin, Di
    Chen, Guangyong
    Daniel Cohen-Or
    Heng, Pheng-Ann
    Huang, Hui
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 1320 - 1328
  • [15] Non-Local Aggregation for RGB-D Semantic Segmentation
    Zhang, Guodong
    Xue, Jing-Hao
    Xie, Pengwei
    Yang, Sifan
    Wang, Guijin
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 658 - 662
  • [16] Cascaded Feature Network for Semantic Segmentation of RGB-D Images
    Lin, Di
    Chen, Guangyong
    Cohen-Or, Daniel
    Heng, Pheng-Ann
    Huang, Hui
    Proceedings of the IEEE International Conference on Computer Vision, 2017, 2017-October : 1320 - 1328
  • [17] Learning Strengths and Weaknesses of Classifiers for RGB-D Semantic Segmentation
    Fooladgar, Fahimeh
    Kasaei, Shohreh
    2015 9TH IRANIAN CONFERENCE ON MACHINE VISION AND IMAGE PROCESSING (MVIP), 2015, : 176 - 179
  • [18] Clothes Grasping and Unfolding Based on RGB-D Semantic Segmentation
    Zhu, Xingyu
    Wang, Xin
    Freer, Jonathan
    Chang, Hyung Jin
    Gao, Yixing
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 9471 - 9477
  • [19] Small Obstacle Avoidance Based on RGB-D Semantic Segmentation
    Hua, Minjie
    Nan, Yibing
    Lian, Shiguo
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 886 - 894
  • [20] Accurate semantic segmentation of RGB-D images for indoor navigation
    Sharan, Sudeep
    Nauth, Peter
    Dominguez-Jimenez, Juan-Jose
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (06)