Scale-invariant structure of size fluctuations in plants

被引:3
|
作者
Picoli, S., Jr. [1 ,2 ]
Mendes, R. S. [1 ,2 ]
Lenzi, E. K. [1 ,2 ]
Malacarne, L. C. [1 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[2] Natl Inst Sci & Technol Complex Syst, BR-22290180 Rio De Janeiro, RJ, Brazil
来源
SCIENTIFIC REPORTS | 2012年 / 2卷
关键词
FREQUENCY-DISTRIBUTIONS; ASYMMETRIC COMPETITION; DENSITY; POPULATIONS; MONOCULTURES; HIERARCHIES; INEQUALITY; HEIGHT; GROWTH;
D O I
10.1038/srep00328
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A wide range of physical and biological systems exhibit complex behaviours characterised by a scale-invariant structure of the fluctuations in their output signals. In the context of plant populations, scaling relationships are typically allometric. In this study, we analysed spatial variation in the size of maize plants (Zea Mays L.) grown in agricultural plots at constant densities and found evidence of scaling in the size fluctuations of plants. The findings indicate that the scaling of the probability distribution of spatial size fluctuation exhibits non-Gaussian behaviour compatible with a Levy stable process. The scaling relationships were observed for spatial scales spanning three orders of magnitude. These findings should provide additional information for the selection and development of empirically accurate models of pattern formation in plant populations.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] SCALE-INVARIANT PARTON MODEL
    KOGUT, J
    SUSSKIND, L
    PHYSICAL REVIEW D, 1974, 9 (03): : 697 - 705
  • [42] Scale-invariant patterning by size-dependent inhibition of Nodal signalling
    Almuedo-Castillo, Maria
    Blaessle, Alexander
    Moersdorf, David
    Marcon, Luciano
    Soh, Gary H.
    Rogers, Katherine W.
    Schier, Alexander F.
    Mueller, Patrick
    NATURE CELL BIOLOGY, 2018, 20 (09) : 1032 - +
  • [43] Scale-invariant patterning by size-dependent inhibition of Nodal signalling
    María Almuedo-Castillo
    Alexander Bläßle
    David Mörsdorf
    Luciano Marcon
    Gary H. Soh
    Katherine W. Rogers
    Alexander F. Schier
    Patrick Müller
    Nature Cell Biology, 2018, 20 : 1032 - 1042
  • [44] SCALE-INVARIANT REGULARIZATION FOR QED
    SUZUKI, T
    PHYSICS LETTERS B, 1979, 86 (01) : 34 - 38
  • [45] Inflation in a scale-invariant universe
    Ferreira, Pedro G.
    Hill, Christopher T.
    Noller, Johannes
    Ross, Graham G.
    PHYSICAL REVIEW D, 2018, 97 (12)
  • [46] Scale-invariant structure saliency selection for fast image fusion
    Liang, Yixiong
    Mao, Yuan
    Xia, Jiazhi
    Xiang, Yao
    Liu, Jianfeng
    NEUROCOMPUTING, 2019, 356 : 119 - 130
  • [47] SCALE-INVARIANT EXTENDED INFLATION
    HOLMAN, R
    KOLB, EW
    VADAS, SL
    WANG, Y
    PHYSICAL REVIEW D, 1991, 43 (12): : 3833 - 3845
  • [48] Scale-invariant gravity: geometrodynamics
    Anderson, E
    Barbour, J
    Foster, B
    O Murchadha, N
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (08) : 1571 - 1604
  • [49] SCALE-INVARIANT CORNER KEYPOINTS
    Li, Bo
    Li, Haibo
    Soderstrom, Ulrik
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 5741 - 5745
  • [50] SCALE-INVARIANT STRUCTURE OF THE PARAMETER SPACE FOR COUPLED FEIGENBAUM SYSTEMS
    KUZNETSOV, SP
    ZHURNAL TEKHNICHESKOI FIZIKI, 1985, 55 (09): : 1830 - 1834