Scale-invariant patterning by size-dependent inhibition of Nodal signalling

被引:0
|
作者
María Almuedo-Castillo
Alexander Bläßle
David Mörsdorf
Luciano Marcon
Gary H. Soh
Katherine W. Rogers
Alexander F. Schier
Patrick Müller
机构
[1] Friedrich Miescher Laboratory of the Max Planck Society,Department of Molecular and Cellular Biology
[2] Harvard University,Centro Andaluz de Biología del Desarrollo
[3] Universidad Pablo de Olavide,undefined
来源
Nature Cell Biology | 2018年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Individuals can vary substantially in size, but the proportions of their body plans are often maintained. We generated smaller zebrafish by removing 30% of their cells at the blastula stages and found that these embryos developed into normally patterned individuals. Strikingly, the proportions of all germ layers adjusted to the new embryo size within 2 hours after cell removal. As Nodal–Lefty signalling controls germ-layer patterning, we performed a computational screen for scale-invariant models of this activator–inhibitor system. This analysis predicted that the concentration of the highly diffusive inhibitor Lefty increases in smaller embryos, leading to a decreased Nodal activity range and contracted germ-layer dimensions. In vivo studies confirmed that Lefty concentration increased in smaller embryos, and embryos with reduced Lefty levels or with diffusion-hindered Lefty failed to scale their tissue proportions. These results reveal that size-dependent inhibition of Nodal signalling allows scale-invariant patterning.
引用
收藏
页码:1032 / 1042
页数:10
相关论文
共 50 条
  • [1] Scale-invariant patterning by size-dependent inhibition of Nodal signalling
    Almuedo-Castillo, Maria
    Blaessle, Alexander
    Moersdorf, David
    Marcon, Luciano
    Soh, Gary H.
    Rogers, Katherine W.
    Schier, Alexander F.
    Mueller, Patrick
    NATURE CELL BIOLOGY, 2018, 20 (09) : 1032 - +
  • [2] Scale-invariant structure of size fluctuations in plants
    Picoli, S., Jr.
    Mendes, R. S.
    Lenzi, E. K.
    Malacarne, L. C.
    SCIENTIFIC REPORTS, 2012, 2
  • [3] Scale-invariant structure of size fluctuations in plants
    S. Picoli
    R. S. Mendes
    E. K. Lenzi
    L. C. Malacarne
    Scientific Reports, 2
  • [4] Dispersion of Scale-Invariant Size-Distribution Functions
    Dubrovskii, V. G.
    TECHNICAL PHYSICS LETTERS, 2017, 43 (05) : 413 - 415
  • [5] Dispersion of scale-invariant size-distribution functions
    V. G. Dubrovskii
    Technical Physics Letters, 2017, 43 : 413 - 415
  • [6] SIZE-DEPENDENT VARIATION OF NODAL PROPERTIES IN MYELINATED NERVE
    SMITH, KJ
    SCHAUF, CL
    NATURE, 1981, 293 (5830) : 297 - 299
  • [7] How to Color a French Flag Biologically Inspired Algorithms for Scale-Invariant Patterning
    Ancona, Bertie
    Bajwa, Ayesha
    Lynch, Nancy
    Mallmann-Trenn, Frederik
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, SIROCCO 2019, 2019, 11639 : 327 - 331
  • [8] Superintegrable and Scale-Invariant Quantum Systems with Position-Dependent Mass
    A. G. Nikitin
    Ukrainian Mathematical Journal, 2022, 74 : 405 - 419
  • [9] Emergence of size-dependent networks on genome scale
    Kuznetsov, V. A.
    RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B, 2006, 7A-B : 754 - 757
  • [10] Scale-invariant Fermi gas in a time-dependent harmonic potential
    Moroz, Sergej
    PHYSICAL REVIEW A, 2012, 86 (01):