Some new upper bounds for the inverse sum indeg index of graphs

被引:9
|
作者
Ali, Akbar [1 ,2 ]
Matejic, Marjan [3 ]
Milovanovic, Emina [3 ]
Milovanovic, Igor [3 ]
机构
[1] Univ Hail, Coll Sci, Hail, Saudi Arabia
[2] Univ Management & Technol, Knowledge Unit Sci, Sialkot, Pakistan
[3] Univ Nis, Fac Elect Engn, POB 73, Nish 18000, Serbia
关键词
vertex-degree-based topological indices; inverse sum indeg index; Zagreb indices; multiplicative Zagreb indices; MOLECULAR-ORBITALS;
D O I
10.5614/ejgta.2020.8.1.5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a simple connected graph with the vertex set V = {1, 2, . . . , n} and sequence of vertex degrees (d(1), d(2), . . . , d(n)) where di denotes the degree of a vertex i is an element of V. With i similar to j, we denote the adjacency of the vertices i and j in the graph G. The inverse sum indeg (ISI) index of the graph G is defined as ISI(G) = Sigma(i similar to j)d(i)d(j)/d(i)+d(j). Some new upper bounds for the ISI index are obtained in this paper.
引用
收藏
页码:59 / 70
页数:12
相关论文
共 50 条
  • [41] Linear and non-linear inequalities on the inverse sum indeg index
    Gutman, Ivan
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    DISCRETE APPLIED MATHEMATICS, 2019, 258 : 123 - 134
  • [42] On two conjectures concerning trees with maximal inverse sum indeg index
    Lin, Wenshui
    Fu, Peifang
    Zhang, Guodong
    Hu, Peng
    Wang, Yikai
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [43] On two conjectures concerning trees with maximal inverse sum indeg index
    Wenshui Lin
    Peifang Fu
    Guodong Zhang
    Peng Hu
    Yikai Wang
    Computational and Applied Mathematics, 2022, 41
  • [44] On the inverse sum indeg energy of trees
    Hatefi, H.
    Ahangar, H. Abdollahzadeh
    Khoeilar, R.
    Sheikholeslami, S. M.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (09)
  • [45] New upper bounds for Estrada index of bipartite graphs
    Fath-Tabar, G. H.
    Ashrafi, A. R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2607 - 2611
  • [46] Some Upper Bounds for the 3-Proper Index of Graphs
    Chang, Hong
    Li, Xueliang
    Qin, Zhongmei
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 1681 - 1695
  • [47] Some upper bounds for 3-rainbow index of graphs
    Liu, Tingting
    Hu, Yumei
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2016, 97 : 217 - 225
  • [48] Some Upper Bounds for the 3-Proper Index of Graphs
    Hong Chang
    Xueliang Li
    Zhongmei Qin
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1681 - 1695
  • [49] THE UPPER BOUNDS FOR MULTIPLICATIVE SUM ZAGREB INDEX OF SOME GRAPH OPERATIONS
    Nacaroglu, Yasar
    Maden, A. Dilek
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (03): : 749 - 761
  • [50] Upper bounds for the sum of Laplacian eigenvalues of graphs
    Du, Zhibin
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3672 - 3683