On two conjectures concerning trees with maximal inverse sum indeg index

被引:0
|
作者
Wenshui Lin
Peifang Fu
Guodong Zhang
Peng Hu
Yikai Wang
机构
[1] Xiamen University,School of Informatics
来源
关键词
Inverse sum indeg index; Trees; Extremal graphs; Greedy tree; 05C09; 05C07; 05C05;
D O I
暂无
中图分类号
学科分类号
摘要
The inverse sum indeg (ISI) index of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V, E)$$\end{document} is defined as ISI(G)=∑vivj∈Edidj/(di+dj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ISI(G) = \sum _{v_i v_j \in E} d_i d_j/(d_i + d_j)$$\end{document}, where V={v0,v1,…,vn-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V=\{v_0, v_1, \ldots , v_{n-1}\}$$\end{document} and E are, respectively, the vertex set and edge set of G, and di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_i$$\end{document} is the degree of vertex vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_i$$\end{document}. This topological index was shown to be well correlated with the total surface area of octane isomers. However, the problem of characterizing trees with maximal ISI index (optimal trees, for convenience) appears to be difficult. Let T be an n-vertex optimal tree. Recently, Chen et al. (Appl Math Comput 392:125731, 2021) proved some structural features of T, and proposed some problems and conjectures for further research. In particular, they conjectured that ISI(T)<2n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ISI(T) < 2n-2$$\end{document}, and T has no vertices of degree 2 if n≥20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 20$$\end{document}. In this paper, we confirm these two conjectures.
引用
收藏
相关论文
共 50 条
  • [1] On two conjectures concerning trees with maximal inverse sum indeg index
    Lin, Wenshui
    Fu, Peifang
    Zhang, Guodong
    Hu, Peng
    Wang, Yikai
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [2] A note on the maximal inverse sum indeg index of trees
    Gao, Wei
    DISCRETE MATHEMATICS LETTERS, 2024, 14 : 36 - 43
  • [3] On connected graphs and trees with maximal inverse sum indeg index
    Chen, Xiaodan
    Li, Xiuyu
    Lin, Wenshui
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 392
  • [4] A Note on Chemical Trees with Maximal Inverse Sum Indeg Index
    Jiang, Yisheng
    Chen, Xiaodan
    Lin, Wenshui
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2021, 86 (01) : 29 - 38
  • [5] Large trees with maximal inverse sum indeg index have no vertices of degree 2 or 3
    Wu, Yuehan
    Hong, Chengxi
    Fu, Peifang
    Lin, Wenshui
    DISCRETE APPLIED MATHEMATICS, 2025, 360 : 131 - 138
  • [6] On the inverse sum indeg index
    Sedlar, Jelena
    Stevanovi, Dragan
    Vasilyev, Alexander
    DISCRETE APPLIED MATHEMATICS, 2015, 184 : 202 - 212
  • [7] On the inverse sum indeg energy of trees
    Hatefi, H.
    Ahangar, H. Abdollahzadeh
    Khoeilar, R.
    Sheikholeslami, S. M.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (09)
  • [8] Inverse sum indeg index of graphs
    Pattabiraman, K.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (02) : 155 - 167
  • [9] THE INVERSE SUM INDEG INDEX OF SOME NANOTUBES
    Falahati-Nezhad, Farzaneh
    Azari, Mahdieh
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2016, 61 (01): : 63 - 70
  • [10] Sharp bounds on the inverse sum indeg index
    Falahati-Nezhad, Farzaneh
    Azari, Mandieh
    Doslic, Tomislav
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 185 - 195