On two conjectures concerning trees with maximal inverse sum indeg index

被引:0
|
作者
Wenshui Lin
Peifang Fu
Guodong Zhang
Peng Hu
Yikai Wang
机构
[1] Xiamen University,School of Informatics
来源
关键词
Inverse sum indeg index; Trees; Extremal graphs; Greedy tree; 05C09; 05C07; 05C05;
D O I
暂无
中图分类号
学科分类号
摘要
The inverse sum indeg (ISI) index of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V, E)$$\end{document} is defined as ISI(G)=∑vivj∈Edidj/(di+dj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ISI(G) = \sum _{v_i v_j \in E} d_i d_j/(d_i + d_j)$$\end{document}, where V={v0,v1,…,vn-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V=\{v_0, v_1, \ldots , v_{n-1}\}$$\end{document} and E are, respectively, the vertex set and edge set of G, and di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_i$$\end{document} is the degree of vertex vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_i$$\end{document}. This topological index was shown to be well correlated with the total surface area of octane isomers. However, the problem of characterizing trees with maximal ISI index (optimal trees, for convenience) appears to be difficult. Let T be an n-vertex optimal tree. Recently, Chen et al. (Appl Math Comput 392:125731, 2021) proved some structural features of T, and proposed some problems and conjectures for further research. In particular, they conjectured that ISI(T)<2n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ISI(T) < 2n-2$$\end{document}, and T has no vertices of degree 2 if n≥20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 20$$\end{document}. In this paper, we confirm these two conjectures.
引用
收藏
相关论文
共 50 条
  • [21] A short note on inverse sum indeg index of graphs
    Balachandran, Selvaraj
    Elumalai, Suresh
    Mansour, Toufik
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (01)
  • [22] On the neighborhood inverse sum indeg index of fuzzy graph with application
    Jana, Umapada
    Ghorai, Ganesh
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (02) : 1211 - 1239
  • [23] Inverse Sum Indeg Index (Energy) with Applications to Anticancer Drugs
    Altassan, Alaa
    Rather, Bilal Ahmad
    Imran, Muhammad
    MATHEMATICS, 2022, 10 (24)
  • [24] The Generalized Inverse Sum Indeg Index of Some Graph Operations
    Wang, Ying
    Hafeez, Sumaira
    Akhter, Shehnaz
    Iqbal, Zahid
    Aslam, Adnan
    SYMMETRY-BASEL, 2022, 14 (11):
  • [25] Bounds on Sombor index and inverse sum indeg (ISI) index of graph operations
    Jamal, Fareeha
    Imran, Muhammed
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (04) : 785 - 798
  • [26] The inverse sum indeg index of graphs with some given parameters
    Chen, Hanlin
    Deng, Hanyuan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (01)
  • [27] Sharp Bounds for the Inverse Sum Indeg Index of Graph Operations
    Rani, Anam
    Imran, Muhammad
    Ali, Usman
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [28] On the neighborhood inverse sum indeg index of fuzzy graph with application
    Umapada Jana
    Ganesh Ghorai
    Journal of Applied Mathematics and Computing, 2024, 70 : 1211 - 1239
  • [29] Inverse Sum Indeg Reciprocal Status Index and Co-index of Graphs
    Yu, Zhengqin
    Zhou, Shuming
    Tian, Tao
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (04) : 2007 - 2027
  • [30] Inverse Sum Indeg Reciprocal Status Index and Co-index of Graphs
    Zhengqin Yu
    Shuming Zhou
    Tao Tian
    Circuits, Systems, and Signal Processing, 2023, 42 : 2007 - 2027