Saddle-node bifurcation of periodic orbits for a delay differential equation

被引:3
|
作者
Beretka, Szandra [1 ]
Vas, Gabriella [2 ]
机构
[1] Univ Szeged, Bolyai Inst, 1 Aradi V Tere, Szeged, Hungary
[2] Univ Szeged, Bolyai Inst, MTA SZTE Anal & Stochast Res Grp, 1 Aradi V Tere, Szeged, Hungary
关键词
Delay differential equation; Positive feedback; Saddle-node bifurcation; Large-amplitude periodic solution;
D O I
10.1016/j.jde.2020.03.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the scalar delay differential equation (x) over dot(t)= -x(t)+ f(K)(x(t - 1)) with a nondecreasing feedback function f(K) depending on a parameter K, and we verify that a saddle-node bifurcation of periodic orbits takes place as K varies. The nonlinearity f(K) is chosen so that it has two unstable fixed points (hence the dynamical system has two unstable equilibria), and these fixed points remain bounded away from each other as Kchanges. The generated periodic orbits are of large amplitude in the sense that they oscillate about both unstable fixed points of f(K). (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:4215 / 4252
页数:38
相关论文
共 50 条
  • [21] Saddle-Node Bifurcation Leading to Survival Mosquitoes
    Franco-Perez, L.
    Nunez-Lopez, M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (04):
  • [22] Asymptotics of the Solution of a Differential Equation in a Saddle–Node Bifurcation
    L. A. Kalyakin
    Computational Mathematics and Mathematical Physics, 2019, 59 : 1454 - 1469
  • [23] Polynomial estimates and discrete saddle-node homoclinic orbits
    Hüls, T
    Zou, YK
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 256 (01) : 115 - 126
  • [24] BREAKING OF SYMMETRY IN THE SADDLE-NODE HOPF-BIFURCATION
    KIRK, V
    PHYSICS LETTERS A, 1991, 154 (5-6) : 243 - 248
  • [25] BASIN ORGANIZATION PRIOR TO A TANGLED SADDLE-NODE BIFURCATION
    Soliman, Mohamed S.
    Thompson, J. M. T.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (01): : 107 - 118
  • [26] NONAUTONOMOUS SADDLE-NODE BIFURCATION IN A CANONICAL ELECTROSTATIC MEMS
    Gutierrez, Alexander
    Torres, Pedro J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (05):
  • [27] NUMERICAL COMPUTATION OF SADDLE-NODE HOMOCLINIC BIFURCATION POINTS
    SCHECTER, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) : 1155 - 1178
  • [28] TRAVELING PULSES IN A NONLOCAL EQUATION ARISING NEAR A SADDLE-NODE INFINITE CYCLE BIFURCATION
    Chen, Xinfu
    Ermentrout, Bard
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (04) : 1204 - 1229
  • [29] QUASI-TRANSVERSAL SADDLE-NODE BIFURCATION ON SURFACES
    BELOQUI, J
    PACIFICO, MJ
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 : 63 - 88
  • [30] REAL SADDLE-NODE BIFURCATION FROM A COMPLEX VIEWPOINT
    Misiurewicz, Michal
    Perez, Rodrigo A.
    CONFORMAL GEOMETRY AND DYNAMICS, 2008, 12 : 97 - 108