Saddle-node bifurcation of periodic orbits for a delay differential equation

被引:3
|
作者
Beretka, Szandra [1 ]
Vas, Gabriella [2 ]
机构
[1] Univ Szeged, Bolyai Inst, 1 Aradi V Tere, Szeged, Hungary
[2] Univ Szeged, Bolyai Inst, MTA SZTE Anal & Stochast Res Grp, 1 Aradi V Tere, Szeged, Hungary
关键词
Delay differential equation; Positive feedback; Saddle-node bifurcation; Large-amplitude periodic solution;
D O I
10.1016/j.jde.2020.03.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the scalar delay differential equation (x) over dot(t)= -x(t)+ f(K)(x(t - 1)) with a nondecreasing feedback function f(K) depending on a parameter K, and we verify that a saddle-node bifurcation of periodic orbits takes place as K varies. The nonlinearity f(K) is chosen so that it has two unstable fixed points (hence the dynamical system has two unstable equilibria), and these fixed points remain bounded away from each other as Kchanges. The generated periodic orbits are of large amplitude in the sense that they oscillate about both unstable fixed points of f(K). (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:4215 / 4252
页数:38
相关论文
共 50 条
  • [11] Saddle-node bifurcation of viscous profiles
    Achleitner, Franz
    Szmolyan, Peter
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (20) : 1703 - 1717
  • [12] Shilnikov's saddle-node bifurcation
    Glendinning, P
    Sparrow, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (06): : 1153 - 1160
  • [13] A DOUBLE SADDLE-NODE BIFURCATION THEOREM
    Liu, Ping
    Shi, Junping
    Wang, Yuwen
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) : 2923 - 2933
  • [14] On saddle-node bifurcation and chaos of satellites
    Beda, PB
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 4881 - 4886
  • [15] SADDLE-NODE BIFURCATION AND ITS CONTROL OF BURGERS-KdV EQUATION
    Tang, Jiashi
    Zhao, Minghua
    Han, Feng
    Fu, Wenbin
    MODERN PHYSICS LETTERS B, 2010, 24 (06): : 567 - 574
  • [16] Excitability in a model with a saddle-node homoclinic bifurcation
    Dilao, R
    Volford, A
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (02): : 419 - 434
  • [17] Stability of periodic solutions and saddle-node bifurcation set of nonlinear Zener models
    Yu L.
    Wu S.
    Li G.
    Ding W.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (04): : 75 - 81
  • [18] Unstable saddle-node connecting orbits in the averaged Duffing-Rayleigh equation
    Ueta, T
    Kawakami, H
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 3, 1996, : 288 - 291
  • [19] Discontinuous impedance near a saddle-node bifurcation
    Berthier, F
    Diard, JP
    Montella, C
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 410 (02): : 247 - 249
  • [20] THE SADDLE-NODE SEPARATRIX-LOOP BIFURCATION
    SCHECTER, S
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (04) : 1142 - 1156