Gross-Pitaevskii dynamics of Bose-Einstein condensates and superfluid turbulence

被引:44
|
作者
Abid, M
Huepe, C
Metens, S
Nore, C
Pham, CT
Tuckerman, LS
Brachet, ME
机构
[1] Ecole Normale Super, CNRS, Lab Phys Stat, F-75231 Paris, France
[2] Univ Paris 06, F-75231 Paris, France
[3] Univ Paris 07, F-75231 Paris, France
[4] CNRS, UMR 6594, Inst Rech Phenomenes Hors Equilibre, F-13384 Marseille, France
[5] Univ Aix Marseille 1, F-13384 Marseille, France
[6] Univ Aix Marseille 2, F-13384 Marseille, France
[7] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[8] Univ Paris 07, Lab Phys Theor Mat Condensee, F-75005 Paris, France
[9] Lab Informat Mecan & Sci Ingn, F-91403 Orsay, France
关键词
superfluid turbulence; Bose-Einstein condensates; Gross-Pitaevskii equation; bifurcation and dynamics; exact results; branch following method;
D O I
10.1016/j.fluiddyn.2003.09.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The Gross-Pitaevskii equation, also called the nonlinear Schrodinger equation (NLSE), describes the dynamics of low-temperature superflows and Bose-Einstein Condensates (BEC). We review some of our recent NLSE-based numerical studies of superfluid turbulence and BEC stability. The relations with experiments are discussed. (C) 2003 Published by The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.
引用
收藏
页码:509 / 544
页数:36
相关论文
共 50 条
  • [31] Analytical solutions of the coupled Gross-Pitaevskii equations for the three-species Bose-Einstein condensates
    Liu, Y. M.
    Bao, C. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (27)
  • [32] PAINLEVE ANALYSIS, LAX PAIR AND BACKLUND TRANSFORMATION FOR THE GROSS-PITAEVSKII EQUATION IN THE BOSE-EINSTEIN CONDENSATES
    Qi, Feng-Hua
    Tian, Bo
    Xu, Tao
    Zhang, Hai-Qiang
    Li, Li-Li
    Meng, Xiang-Hua
    Lue, Xing
    Liu, Wen-Jun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (08): : 1037 - 1047
  • [33] Optimal Rate for Bose-Einstein Condensation in the Gross-Pitaevskii Regime
    Boccato, Chiara
    Brennecke, Christian
    Cenatiempo, Serena
    Schlein, Benjamin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) : 1311 - 1395
  • [34] Effective two-mode model in Bose-Einstein condensates versus Gross-Pitaevskii simulations
    Mauro Nigro
    Pablo Capuzzi
    Horacio M. Cataldo
    Dora M. Jezek
    The European Physical Journal D, 2017, 71
  • [35] Conformal invariance in out-of-equilibrium Bose-Einstein condensates governed by the Gross-Pitaevskii equation
    Estrada, J. Amette
    Noseda, M.
    Cobelli, P. J.
    Mininni, P. D.
    PHYSICAL REVIEW A, 2024, 109 (06)
  • [36] Vortex synchronization in Bose-Einstein condensates: a time-dependent Gross-Pitaevskii equation approach
    Barnett, Ryan
    Chen, Edward
    Refael, Gil
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [37] Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation
    Bao, WZ
    Jaksch, D
    Markowich, PA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) : 318 - 342
  • [38] Static properties of coupled atomic-molecular Bose-Einstein condensates in modified Gross-Pitaevskii approach
    Gupta, Moumita
    Dastidar, Krishna Rai
    INDIAN JOURNAL OF PHYSICS, 2010, 84 (08) : 961 - 968
  • [39] Energy-dependent scattering and the Gross-Pitaevskii equation in two-dimensional Bose-Einstein condensates
    Lee, MD
    Morgan, SA
    Davis, MJ
    Burnett, K
    PHYSICAL REVIEW A, 2002, 65 (04): : 10
  • [40] Static properties of coupled atomic-molecular Bose-Einstein condensates in modified Gross-Pitaevskii approach
    Moumita Gupta
    Krishna Rai Dastidar
    Indian Journal of Physics, 2010, 84 : 961 - 968