Gross-Pitaevskii dynamics of Bose-Einstein condensates and superfluid turbulence

被引:44
|
作者
Abid, M
Huepe, C
Metens, S
Nore, C
Pham, CT
Tuckerman, LS
Brachet, ME
机构
[1] Ecole Normale Super, CNRS, Lab Phys Stat, F-75231 Paris, France
[2] Univ Paris 06, F-75231 Paris, France
[3] Univ Paris 07, F-75231 Paris, France
[4] CNRS, UMR 6594, Inst Rech Phenomenes Hors Equilibre, F-13384 Marseille, France
[5] Univ Aix Marseille 1, F-13384 Marseille, France
[6] Univ Aix Marseille 2, F-13384 Marseille, France
[7] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[8] Univ Paris 07, Lab Phys Theor Mat Condensee, F-75005 Paris, France
[9] Lab Informat Mecan & Sci Ingn, F-91403 Orsay, France
关键词
superfluid turbulence; Bose-Einstein condensates; Gross-Pitaevskii equation; bifurcation and dynamics; exact results; branch following method;
D O I
10.1016/j.fluiddyn.2003.09.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The Gross-Pitaevskii equation, also called the nonlinear Schrodinger equation (NLSE), describes the dynamics of low-temperature superflows and Bose-Einstein Condensates (BEC). We review some of our recent NLSE-based numerical studies of superfluid turbulence and BEC stability. The relations with experiments are discussed. (C) 2003 Published by The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.
引用
收藏
页码:509 / 544
页数:36
相关论文
共 50 条
  • [21] Bose-Einstein Condensation Beyond the Gross-Pitaevskii Regime
    Adhikari, Arka
    Brennecke, Christian
    Schlein, Benjamin
    ANNALES HENRI POINCARE, 2021, 22 (04): : 1163 - 1233
  • [22] BIFURCATION SOLUTIONS OF GROSS-PITAEVSKII EQUATIONS FOR SPIN-1 BOSE-EINSTEIN CONDENSATES
    Deng, Dong
    Liu, Ruikuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (07): : 3175 - 3193
  • [23] Complete Bose-Einstein Condensation in the Gross-Pitaevskii Regime
    Boccato, Chiara
    Brennecke, Christian
    Cenatiempo, Serena
    Schlein, Benjamin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 359 (03) : 975 - 1026
  • [24] Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation
    Adhikari, SK
    Muruganandam, P
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (12) : 2831 - 2843
  • [25] Line-soliton dynamics and stability of Bose-Einstein condensates in (2+1) Gross-Pitaevskii equation
    Radha, R.
    Kumar, V. Ramesh
    Wadati, Miki
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
  • [26] Collapsing Bose-Einstein condensates beyond the Gross-Pitaevskii approximation -: art. no. 033604
    Wüster, S
    Hope, JJ
    Savage, CM
    PHYSICAL REVIEW A, 2005, 71 (03):
  • [27] ON THREE-COMPONENT GROSS-PITAEVSKII EQUATIONS IN THE SPINOR BOSE-EINSTEIN CONDENSATES WITH TRAPPING POTENTIALS
    Chen, Zhi-you
    Huang, Yu-jen
    Tang, Yong-li
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, : 2011 - 2039
  • [28] Bell-Polynomial Approach and Integrability for the Coupled Gross-Pitaevskii Equations in Bose-Einstein Condensates
    Wang, Yu-Feng
    Tian, Bo
    Wang, Ming
    STUDIES IN APPLIED MATHEMATICS, 2013, 131 (02) : 119 - 134
  • [29] DYNAMICAL LAWS OF THE COUPLED GROSS-PITAEVSKII EQUATIONS FOR SPIN-1 BOSE-EINSTEIN CONDENSATES
    Bao, Weizhu
    Zhang, Yanzhi
    METHODS AND APPLICATIONS OF ANALYSIS, 2010, 17 (01) : 49 - 80
  • [30] Effective two-mode model in Bose-Einstein condensates versus Gross-Pitaevskii simulations
    Nigro, Mauro
    Capuzzi, Pablo
    Cataldo, Horacio M.
    Jezek, Dora M.
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (11):