Long Short-Term Memory Network-Based Metaheuristic for Effective Electric Energy Consumption Prediction

被引:23
|
作者
Hora, Simran Kaur [1 ]
Poongodan, Rachana [2 ]
de Prado, Rocio Perez [3 ]
Wozniak, Marcin [4 ]
Divakarachari, Parameshachari Bidare [5 ]
机构
[1] Chameli Devi Grp Inst, Dept Informat Technol, Indore 452020, India
[2] New Horizon Coll Engn, Dept Comp Sci & Engn, Bangalore 560103, Karnataka, India
[3] Univ Jaen, Dept Telecommun Engn, Jaen 23700, Spain
[4] Silesian Tech Univ, Fac Appl Math, PL-44100 Gliwice, Poland
[5] GSSS Inst Engn & Technol Women, Dept Telecommun Engn, Mysuru 570016, India
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 23期
关键词
butterfly optimization algorithm; electric energy consumption prediction; long short-term memory network; time series analysis; transformation methods; ENSEMBLE; DEMAND; MODEL; MULTIVARIATE;
D O I
10.3390/app112311263
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Electric Energy Consumption Prediction (EECP) is a complex and important process in an intelligent energy management system and its importance has been increasing rapidly due to technological developments and human population growth. A reliable and accurate model for EECP is considered a key factor for an appropriate energy management policy. In recent periods, many artificial intelligence-based models have been developed to perform different simulation functions, engineering techniques, and optimal energy forecasting in order to predict future energy demands on the basis of historical data. In this article, a new metaheuristic based on a Long Short-Term Memory (LSTM) network model is proposed for an effective EECP. After collecting data sequences from the Individual Household Electric Power Consumption (IHEPC) dataset and Appliances Load Prediction (AEP) dataset, data refinement is accomplished using min-max and standard transformation methods. Then, the LSTM network with Butterfly Optimization Algorithm (BOA) is developed for EECP. In this article, the BOA is used to select optimal hyperparametric values which precisely describe the EEC patterns and discover the time series dynamics in the energy domain. This extensive experiment conducted on the IHEPC and AEP datasets shows that the proposed model obtains a minimum error rate relative to the existing models.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Reactive Load Prediction Based on a Long Short-Term Memory Neural Network
    Zhang, Xu
    Wang, Yixian
    Zheng, Yuchuan
    Ding, Ruiting
    Chen, Yunlong
    Wang, Yi
    Cheng, Xueting
    Yue, Shuai
    IEEE ACCESS, 2020, 8 : 90969 - 90977
  • [22] Short-term wind speed prediction model based on long short-term memory network with feature extraction
    Zhongda Tian
    Xiyan Yu
    Guokui Feng
    Earth Science Informatics, 2025, 18 (4)
  • [23] Long Short-term Memory Neural Network for Network Traffic Prediction
    Zhuo, Qinzheng
    Li, Qianmu
    Yan, Han
    Qi, Yong
    2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [24] A Convolutional Long Short-Term Memory Neural Network Based Prediction Model
    Tian, Y. H.
    Wu, Q.
    Zhang, Y.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2020, 15 (05) : 1 - 12
  • [25] Effective energy consumption forecasting using empirical wavelet transform and long short-term memory
    Peng, Lu
    Wang, Lin
    Xia, De
    Gao, Qinglu
    ENERGY, 2022, 238
  • [26] Long short-term memory neural network for glucose prediction
    Carrillo-Moreno, Jaime
    Perez-Gandia, Carmen
    Sendra-Arranz, Rafael
    Garcia-Saez, Gema
    Hernando, M. Elena
    Gutierrez, Alvaro
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (09): : 4191 - 4203
  • [27] Long Short-Term Memory Network for Wireless Channel Prediction
    Tong, Xiaoyun
    Sun, Songlin
    SIGNAL AND INFORMATION PROCESSING, NETWORKING AND COMPUTERS, 2018, 473 : 19 - 26
  • [28] Approach and Landing Energy Prediction Based on a Long Short-Term Memory Model
    Hu, Yahui
    Yan, Jiaqi
    Cao, Ertai
    Yu, Yimeng
    Tian, Haiming
    Huang, Heyuan
    AEROSPACE, 2024, 11 (03)
  • [29] Long short-term memory neural network for glucose prediction
    Jaime Carrillo-Moreno
    Carmen Pérez-Gandía
    Rafael Sendra-Arranz
    Gema García-Sáez
    M. Elena Hernando
    Álvaro Gutiérrez
    Neural Computing and Applications, 2021, 33 : 4191 - 4203
  • [30] An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting
    Liu, Jinyuan
    Wang, Shouxi
    Wei, Nan
    Yang, Yi
    Lv, Yihao
    Wang, Xu
    Zeng, Fanhua
    ENERGIES, 2023, 16 (03)