Effects of Graphene Oxide and Reduced Graphene Oxide Nanostructures on CD4+ Th2 Lymphocytes

被引:8
|
作者
Jose Feito, Maria [1 ]
Cicuendez, Monica [2 ]
Casarrubios, Laura [1 ]
Diez-Orejas, Rosalia [3 ]
Fateixa, Sara [4 ,5 ]
Silva, Daniela [6 ,7 ]
Barroca, Nathalie [6 ,7 ]
Marques, Paula A. A. P. [6 ,7 ]
Teresa Portoles, Maria [1 ,8 ]
机构
[1] Univ Complutense Madrid, Inst Invest Sanitaria Hosp Clin San Carlos IdISSC, Fac Ciencias Quim, Dept Bioquim & Biol Mol, Madrid 28040, Spain
[2] Univ Complutense Madrid, Inst Invest Sanitaria Hosp Clin San Carlos IdISSC, Fac Farm, Dept Quim Ciencias Farmaceut, Madrid 28040, Spain
[3] Univ Complutense Madrid, Inst Invest Sanitaria Hosp Clin San Carlos IdISSC, Fac Farm, Dept Microbiol & Parasitol, Madrid 28040, Spain
[4] Univ Aveiro, Dept Chem, P-3810193 Aveiro, Portugal
[5] Univ Aveiro, CICECO, P-3810193 Aveiro, Portugal
[6] Univ Aveiro, Ctr Mech Technol & Automat TEMA, Dept Mech Engn, P-3810193 Aveiro, Portugal
[7] LASI Intelligent Syst Associate Lab, P-4804533 Guimaraes, Portugal
[8] CIBER BBN, CIBER Bioingn Biomat & Nanomed, Madrid 28040, Spain
关键词
graphene oxide; reduced graphene oxide; lymphocyte; CD4; CD3; immune response; cytokine; ANTIGEN-PRESENTING CELLS; NANOPARTICLES; ASSOCIATION; DESIGN;
D O I
10.3390/ijms231810625
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The activation of T helper (Th) lymphocytes is necessary for the adaptive immune response as they contribute to the stimulation of B cells (for the secretion of antibodies) and macrophages (for phagocytosis and destruction of pathogens) and are necessary for cytotoxic T-cell activation to kill infected target cells. For these issues, Th lymphocytes must be converted into Th effector cells after their stimulation through their surface receptors TCR/CD3 (by binding to peptide-major histocompatibility complex localized on antigen-presenting cells) and the CD4 co-receptor. After stimulation, Th cells proliferate and differentiate into subpopulations, like Th1, Th2 or Th17, with different functions during the adaptative immune response. Due to the central role of the activation of Th lymphocytes for an accurate adaptative immune response and considering recent preclinical advances in the use of nanomaterials to enhance T-cell therapy, we evaluated in vitro the effects of graphene oxide (GO) and two types of reduced GO (rGO15 and rGO30) nanostructures on the Th2 lymphocyte cell line SR.D10. This cell line offers the possibility of studying their activation threshold by employing soluble antibodies against TCR/CD3 and against CD4, as well as the simultaneous activation of these two receptors. In the present study, the effects of GO, rGO15 and rGO30 on the activation/proliferation rate of these Th2 lymphocytes have been analyzed by studying cell viability, cell cycle phases, intracellular content of reactive oxygen species (ROS) and cytokine secretion. High lymphocyte viability values were obtained after treatment with these nanostructures, as well as increased proliferation in the presence of rGOs. Moreover, rGO15 treatment decreased the intracellular ROS content of Th2 cells in all stimulated conditions. The analysis of these parameters showed that the presence of these GO and rGO nanostructures did not alter the response of Th2 lymphocytes.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Effective reinforcement of plasticized starch by the incorporation of graphene, graphene oxide and reduced graphene oxide
    Gonzalez, Kizkitza
    Larraza, Izaskun
    Martin, Loli
    Eceiza, Arantxa
    Gabilondo, Nagore
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 249
  • [42] Effect of characterization probes on the properties of graphene oxide and reduced graphene oxide
    Apurva Sinha
    Pranay Ranjan
    Ajay D. Thakur
    Applied Physics A, 2021, 127
  • [43] Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets
    Shen, Jianfeng
    Hu, Yizhe
    Shi, Min
    Lu, Xin
    Qin, Chen
    Li, Chen
    Ye, Mingxin
    CHEMISTRY OF MATERIALS, 2009, 21 (15) : 3514 - 3520
  • [44] The composites based on plasticized starch and graphene oxide/reduced graphene oxide
    Ma, Tiantian
    Chang, Peter R.
    Zheng, Pengwu
    Ma, Xiaofei
    CARBOHYDRATE POLYMERS, 2013, 94 (01) : 63 - 70
  • [45] Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization
    Hidayah, N. M. S.
    Liu, Wei-Wen
    Lai, Chin-Wei
    Noriman, Z.
    Khe, Cheng-Seong
    Hashim, U.
    Lee, H. Cheun
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE'17): SUSTAINABLE TECHNOLOGY AND PRACTICE FOR INFRASTRUCTURE AND COMMUNITY RESILIENCE, 2017, 1892
  • [46] Multiscale patterning of graphene oxide and reduced graphene oxide for flexible supercapacitors
    Xue, Yuhua
    Zhu, Lin
    Chen, Hao
    Qu, Jia
    Dai, Liming
    CARBON, 2015, 92 : 305 - 310
  • [47] Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm
    Guo, Zhiling
    Xie, Changjian
    Zhang, Peng
    Zhang, Junzhe
    Wang, Guohua
    He, Xiao
    Ma, Yuhui
    Zhao, Bin
    Zhang, Zhiyong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 580 : 1300 - 1308
  • [48] The Potential of Graphene Oxide and Reduced Graphene Oxide in Diagnosis and Treatment of Cancer
    Keramat, Akram
    Kadkhoda, Jamileh
    Farahzadi, Raheleh
    Fathi, Ezzatollah
    Davaran, Soodabeh
    CURRENT MEDICINAL CHEMISTRY, 2022, 29 (26) : 4529 - 4546
  • [49] Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide
    Lee, Myungjin
    Yang, Sena
    Kim, Ki-jeong
    Kim, Sehun
    Lee, Hangil
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (02): : 1142 - 1147
  • [50] Influence of graphene oxide and reduced graphene oxide on the activity and conformation of lysozyme
    Bai, Yitong
    Ming, Zhu
    Cao, Yuye
    Feng, Shicheng
    Yang, Hua
    Chen, Lingyun
    Yang, Sheng-Tao
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2017, 154 : 96 - 103