Effects of Graphene Oxide and Reduced Graphene Oxide Nanostructures on CD4+ Th2 Lymphocytes

被引:8
|
作者
Jose Feito, Maria [1 ]
Cicuendez, Monica [2 ]
Casarrubios, Laura [1 ]
Diez-Orejas, Rosalia [3 ]
Fateixa, Sara [4 ,5 ]
Silva, Daniela [6 ,7 ]
Barroca, Nathalie [6 ,7 ]
Marques, Paula A. A. P. [6 ,7 ]
Teresa Portoles, Maria [1 ,8 ]
机构
[1] Univ Complutense Madrid, Inst Invest Sanitaria Hosp Clin San Carlos IdISSC, Fac Ciencias Quim, Dept Bioquim & Biol Mol, Madrid 28040, Spain
[2] Univ Complutense Madrid, Inst Invest Sanitaria Hosp Clin San Carlos IdISSC, Fac Farm, Dept Quim Ciencias Farmaceut, Madrid 28040, Spain
[3] Univ Complutense Madrid, Inst Invest Sanitaria Hosp Clin San Carlos IdISSC, Fac Farm, Dept Microbiol & Parasitol, Madrid 28040, Spain
[4] Univ Aveiro, Dept Chem, P-3810193 Aveiro, Portugal
[5] Univ Aveiro, CICECO, P-3810193 Aveiro, Portugal
[6] Univ Aveiro, Ctr Mech Technol & Automat TEMA, Dept Mech Engn, P-3810193 Aveiro, Portugal
[7] LASI Intelligent Syst Associate Lab, P-4804533 Guimaraes, Portugal
[8] CIBER BBN, CIBER Bioingn Biomat & Nanomed, Madrid 28040, Spain
关键词
graphene oxide; reduced graphene oxide; lymphocyte; CD4; CD3; immune response; cytokine; ANTIGEN-PRESENTING CELLS; NANOPARTICLES; ASSOCIATION; DESIGN;
D O I
10.3390/ijms231810625
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The activation of T helper (Th) lymphocytes is necessary for the adaptive immune response as they contribute to the stimulation of B cells (for the secretion of antibodies) and macrophages (for phagocytosis and destruction of pathogens) and are necessary for cytotoxic T-cell activation to kill infected target cells. For these issues, Th lymphocytes must be converted into Th effector cells after their stimulation through their surface receptors TCR/CD3 (by binding to peptide-major histocompatibility complex localized on antigen-presenting cells) and the CD4 co-receptor. After stimulation, Th cells proliferate and differentiate into subpopulations, like Th1, Th2 or Th17, with different functions during the adaptative immune response. Due to the central role of the activation of Th lymphocytes for an accurate adaptative immune response and considering recent preclinical advances in the use of nanomaterials to enhance T-cell therapy, we evaluated in vitro the effects of graphene oxide (GO) and two types of reduced GO (rGO15 and rGO30) nanostructures on the Th2 lymphocyte cell line SR.D10. This cell line offers the possibility of studying their activation threshold by employing soluble antibodies against TCR/CD3 and against CD4, as well as the simultaneous activation of these two receptors. In the present study, the effects of GO, rGO15 and rGO30 on the activation/proliferation rate of these Th2 lymphocytes have been analyzed by studying cell viability, cell cycle phases, intracellular content of reactive oxygen species (ROS) and cytokine secretion. High lymphocyte viability values were obtained after treatment with these nanostructures, as well as increased proliferation in the presence of rGOs. Moreover, rGO15 treatment decreased the intracellular ROS content of Th2 cells in all stimulated conditions. The analysis of these parameters showed that the presence of these GO and rGO nanostructures did not alter the response of Th2 lymphocytes.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Environmental impact of the production of graphene oxide and reduced graphene oxide
    L. Serrano-Luján
    S. Víctor-Román
    C. Toledo
    O. Sanahuja-Parejo
    A. E. Mansour
    J. Abad
    A. Amassian
    A. M. Benito
    W. K. Maser
    A. Urbina
    SN Applied Sciences, 2019, 1
  • [22] Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide
    Wojtoniszak, Malgorzata
    Chen, Xuecheng
    Kalenczuk, Ryszard J.
    Wajda, Anna
    Lapczuk, Joanna
    Kurzawski, Mateusz
    Drozdzik, Marek
    Chu, Pual K.
    Borowiak-Palen, Ewa
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2012, 89 : 79 - 85
  • [23] Photoconductivity of reduced graphene oxide and graphene oxide composite films
    Liang, Haifeng
    Ren, Wen
    Su, Junhong
    Cai, Changlong
    THIN SOLID FILMS, 2012, 521 : 163 - 167
  • [24] Argon diffusion in graphene oxide and reduced graphene oxide foils
    Torrisi, L.
    Silipigni, L.
    Torrisi, A.
    VACUUM, 2022, 200
  • [25] Environmental impact of the production of graphene oxide and reduced graphene oxide
    Serrano-Lujan, L.
    Victor-Roman, S.
    Toledo, C.
    Sanahuja-Parejo, O.
    Mansour, A. E.
    Abad, J.
    Amassian, A.
    Benito, A. M.
    Maser, W. K.
    Urbina, A.
    SN APPLIED SCIENCES, 2019, 1 (02):
  • [26] Synthesis and Characterizations of Graphene oxide and Reduced Graphene oxide Nanosheets
    Venkanna, M.
    Chakraborty, Amit K.
    SOLID STATE PHYSICS: PROCEEDINGS OF THE 58TH DAE SOLID STATE PHYSICS SYMPOSIUM 2013, PTS A & B, 2014, 1591 : 574 - 576
  • [27] Electronic structure of graphene oxide and reduced graphene oxide monolayers
    Sutar, D. S.
    Singh, Gulbagh
    Botcha, V. Divakar
    APPLIED PHYSICS LETTERS, 2012, 101 (10)
  • [28] Investigation of Evolution in the Synthesis of Graphene Oxide and Reduced Graphene Oxide
    Anwar, Hafeez
    Bin Amin, Ahmad
    Iqbal, Mujahid
    Haseeb, Muhammad
    Hanif, Sabiha
    Khalid, Maryam
    Sajid, Huma
    Abbas, Beenish
    Ul Hassan, Mahmoud
    Dissanayake, M. A. K. L.
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2022, 41 (12): : 3981 - 3988
  • [29] Permselective properties of graphene oxide and reduced graphene oxide electrodes
    Sanguansak, Yanisa
    Srimuk, Pattarachai
    Krittayavathananon, Atiweena
    Luanwuthi, Santamon
    Chinvipas, Natee
    Chiochan, Poramane
    Khuntilo, Jakkrit
    Klunbud, Panupong
    Mungcharoen, Thumrongrut
    Sawangphruk, Montree
    CARBON, 2014, 68 : 662 - 669
  • [30] Nitrogen diffusion in graphene oxide and reduced graphene oxide foils
    Torrisi, L.
    Cutroneo, M.
    Torrisi, A.
    Silipigni, L.
    VACUUM, 2021, 194