Peritectic solidification mechanism and accompanying microhardness enhancement of rapidly quenched Ni-Zr alloys

被引:4
|
作者
Si, Y. F. [1 ]
Wang, H. P. [1 ]
Lu, P. [1 ]
Wei, B. [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Phys, Xian 710072, Shaanxi, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
MICROSTRUCTURE; GROWTH; TRANSITION; SELECTION; BEHAVIOR;
D O I
10.1007/s00339-019-2399-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hypoperitectic, peritectic, and hyperperitectic Ni-Zr alloys were rapidly solidified by melt spinning technique. The effect of cooling rate on their phase selection and microhardness was investigated. When the cooling rate reaches 1.0x10(7) K/s, the growth of primary Ni7Zr2 and interdendritic eutectic ((Ni)+Ni5Zr) phases during the solidification of peritectic Ni-16.7 at.% Zr alloy melt is inhibited, and complete peritectic Ni5Zr phase forms. The formation ability of complete peritectic Ni5Zr phase of hypoperitectic Ni-16 at.% Zr alloy is considerably higher than that of peritectic Ni-16.7 at.% Zr alloy. With the increase of cooling rate, the competitive growth of the primary Ni7Zr2 phase and the peritectic Ni5Zr phase occurs in the hyperperitectic Ni-20 at.% Zr alloy. The microstructure of primary Ni7Zr2 phase evolves from coarse dendrite to island banding. Furthermore, the microhardness of Ni-Zr peritectic type alloys is enhanced with the rise of cooling rate. In the case of peritectic Ni-16.7 at.% Zr alloy, this increases from 3.98 to 7.01 GPa, realizing an enhancement of 76.8%.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] THE STRUCTURE OF AMORPHOUS NI-ZR ALLOYS
    LEE, AE
    JOST, S
    WAGNER, CNJ
    TANNER, LE
    JOURNAL DE PHYSIQUE, 1985, 46 (C-8): : 181 - 185
  • [12] Solidification of Ni-Re Peritectic Alloys
    W. J. Boettinger
    D. E. Newbury
    N. W. M. Ritchie
    M. E. Williams
    U. R. Kattner
    E. A. Lass
    K.-W. Moon
    M. B. Katz
    J. H. Perepezko
    Metallurgical and Materials Transactions A, 2019, 50 : 772 - 788
  • [13] Solidification of Ni-Re Peritectic Alloys
    Boettinger, W. J.
    Newbury, D. E.
    Ritchie, N. W. M.
    Williams, M. E.
    Kattner, U. R.
    Lass, E. A.
    Moon, K. -W.
    Katz, M. B.
    Perepezko, J. H.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2019, 50A (02): : 772 - 788
  • [14] A kinetic transition from peritectic crystallization to amorphous solidification of rapidly quenched refractory Nb-Ni alloy
    Zhao, J. F.
    Li, M. X.
    Wang, H. P.
    Wei, B.
    ACTA MATERIALIA, 2022, 237
  • [15] Crystalline phases found in rapidly quenched Ni-Nb-Zr alloys
    Deo, L. P.
    Kaufman, M. J.
    Wang, B.
    Nikodemski, S.
    De Oliveira, M. F.
    JOURNAL OF MICROSCOPY, 2017, 267 (01) : 49 - 56
  • [16] DIFFUSIVITIES OF NI, ZR, AU, AND CU IN AMORPHOUS NI-ZR ALLOYS
    HAHN, H
    AVERBACK, RS
    ROTHMAN, SJ
    PHYSICAL REVIEW B, 1986, 33 (12): : 8825 - 8828
  • [17] Formation of zirconium and nickel oxide nanoparticles via oxidation of quenched melted Ni-Zr alloys
    Saidi, D.
    Zaid, B.
    Boutarfaia, S.
    Hadji, S.
    Souami, N.
    Ahmed, A. Si
    Biberian, J. P.
    CERAMICS INTERNATIONAL, 2012, 38 (08) : 6957 - 6961
  • [18] SURFACE OXIDATION OF AMORPHOUS NI-ZR ALLOYS
    WALZ, B
    OELHAFEN, P
    GUNTHERODT, HJ
    BAIKER, A
    APPLIED SURFACE SCIENCE, 1989, 37 (03) : 337 - 352
  • [19] Diffusion of Hydrogen in Amorphous Ni-Zr Alloys
    Pastukhov, E. A.
    Sidorov, N. I.
    Vostrjakov, A. A.
    Chentsov, V. P.
    DIFFUSION IN SOLIDS AND LIQUIDS VI, PTS 1 AND 2, 2011, 312-315 : 149 - 153
  • [20] CO CHEMISORPTION ON GLASSY NI-ZR ALLOYS
    HAUERT, R
    OELHAFEN, P
    SCHLOGL, R
    GUNTHERODT, HJ
    SOLID STATE COMMUNICATIONS, 1985, 55 (07) : 583 - 586