SPSN: Superpixel Prototype Sampling Network for RGB-D Salient Object Detection

被引:52
|
作者
Lee, Minhyeok [1 ]
Park, Chaewon [1 ]
Cho, Suhwan [1 ]
Lee, Sangyoun [1 ]
机构
[1] Yonsei Univ, Seoul, South Korea
来源
COMPUTER VISION, ECCV 2022, PT XXIX | 2022年 / 13689卷
关键词
RGB-D salient object detection; Superpixel; Prototype learning; Reliance selection;
D O I
10.1007/978-3-031-19818-2_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-D salient object detection (SOD) has been in the spotlight recently because it is an important preprocessing operation for various vision tasks. However, despite advances in deep learning-based methods, RGB-D SOD is still challenging due to the large domain gap between an RGB image and the depth map and low-quality depth maps. To solve this problem, we propose a novel superpixel prototype sampling network (SPSN) architecture. The proposed model splits the input RGB image and depth map into component superpixels to generate component prototypes. We design a prototype sampling network so that the network only samples prototypes corresponding to salient objects. In addition, we propose a reliance selection module to recognize the quality of each RGB and depth feature map and adaptively weight them in proportion to their reliability. The proposed method makes the model robust to inconsistencies between RGB images and depth maps and eliminates the influence of non-salient objects. Our method is evaluated on five popular datasets, achieving state-of-the-art performance. We prove the effectiveness of the proposed method through comparative experiments.
引用
收藏
页码:630 / 647
页数:18
相关论文
共 50 条
  • [11] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    ComputationalVisualMedia, 2021, 7 (01) : 37 - 69
  • [12] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69
  • [13] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    Computational Visual Media, 2021, 7 : 37 - 69
  • [14] Salient Object Detection in RGB-D Videos
    Mou, Ao
    Lu, Yukang
    He, Jiahao
    Min, Dingyao
    Fu, Keren
    Zhao, Qijun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6660 - 6675
  • [15] Calibrated RGB-D Salient Object Detection
    Ji, Wei
    Li, Jingjing
    Yu, Shuang
    Zhang, Miao
    Piao, Yongri
    Yao, Shunyu
    Bi, Qi
    Ma, Kai
    Zheng, Yefeng
    Lu, Huchuan
    Cheng, Li
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9466 - 9476
  • [16] Bidirectional feature learning network for RGB-D salient object detection
    Niu, Ye
    Zhou, Sanping
    Dong, Yonghao
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    PATTERN RECOGNITION, 2024, 150
  • [17] Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Chen, Minyu
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3528 - 3542
  • [18] Hybrid-Attention Network for RGB-D Salient Object Detection
    Chen, Yuzhen
    Zhou, Wujie
    APPLIED SCIENCES-BASEL, 2020, 10 (17):
  • [19] Feature Calibrating and Fusing Network for RGB-D Salient Object Detection
    Zhang, Qiang
    Qin, Qi
    Yang, Yang
    Jiao, Qiang
    Han, Jungong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1493 - 1507
  • [20] Triple-Complementary Network for RGB-D Salient Object Detection
    Huang, Rui
    Xing, Yan
    Zou, Yaobin
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 775 - 779