Identification of faulty sensors using principal component analysis

被引:395
|
作者
Dunia, R
Qin, SJ
Edgar, TF
McAvoy, TJ
机构
[1] UNIV TEXAS,DEPT CHEM ENGN,AUSTIN,TX 78712
[2] FISHER ROSEMOUNT SYST,AUSTIN,TX 78754
[3] UNIV MARYLAND,DEPT CHEM ENGN,COLLEGE PK,MD 20742
关键词
D O I
10.1002/aic.690421011
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Even though there has been a recent interest in the use of principal component analysis (PCA) for sensor fault detection and identification, few identification schemes for faulty sensors have considered the possibility of an abnormal operating condition of the plant. This article presents the use of PCA for sensor fault identification via reconstruction. The principal component model captures measurement correlations and reconstructs each variable by using iterative substitution and optimization. The transient behavior of a number of sensor faults in various types of residuals is analyzed. A senor validity inner (SVI) is proposed to determine the status of each sensor. On-line implementation of the SVI is examined for different types of sensor faults. The way the index is filtered represents an important tuning parameter for sensor fault identification. Ail example using boiler process data demonstrates attractive features of the SVI.
引用
收藏
页码:2797 / 2812
页数:16
相关论文
共 50 条
  • [31] Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra
    Beattie, J. Renwick
    Esmonde-White, Francis W. L.
    APPLIED SPECTROSCOPY, 2021, 75 (04) : 361 - 375
  • [32] Statistical analysis of mitochondrial pathologies in childhood: Identification of deficiencies using principal component analysis
    Letellier, T
    Durrieu, G
    Malgat, M
    Rossignol, R
    Antoch, J
    Deshouillers, JM
    Coquet, M
    Lacombe, D
    Netter, JC
    Pedespan, JM
    Redonnet-Vernhet, I
    Mazat, JP
    LABORATORY INVESTIGATION, 2000, 80 (07) : 1019 - 1030
  • [33] Online identification of nonlinear system using reduced kernel principal component analysis
    Okba Taouali
    Ilyes Elaissi
    Hassani Messaoud
    Neural Computing and Applications, 2012, 21 : 161 - 169
  • [34] A novel online structure damage identification using principal component analysis (PCA)
    Hong, Soonyoung
    Shen, M. -H. Herman
    Proceedings of the ASME Power Conference 2007, 2007, : 367 - 374
  • [35] Identification of Linear Dynamic Systems using Dynamic Iterative Principal Component Analysis
    Maurya, Deepak
    Tangirala, Arun K.
    Narasimhan, Shankar
    IFAC PAPERSONLINE, 2016, 49 (07): : 1014 - 1019
  • [36] FAULT DETECTION AND IDENTIFICATION IN NPP INSTRUMENTS USING KERNEL PRINCIPAL COMPONENT ANALYSIS
    Ma, Jianping
    Jiang, Jin
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING 2010, VOL 1, 2011, : 765 - 771
  • [37] Identification of weak faint point sources by using principal component analysis.
    López-Alonso, JM
    Alda, J
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING IX, 2004, 5238 : 142 - 152
  • [38] Online identification of nonlinear system using reduced kernel principal component analysis
    Taouali, Okba
    Elaissi, Ilyes
    Messaoud, Hassani
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (01): : 161 - 169
  • [39] Identification of morphofunctional traits in Mangalarga Marchador horse using principal component analysis
    Meira, C. T.
    Pereira, I. G.
    Farah, M. M.
    Pires, A. V.
    Garcia, D. A.
    Cruz, V. A. R.
    ARQUIVO BRASILEIRO DE MEDICINA VETERINARIA E ZOOTECNIA, 2013, 65 (06) : 1843 - 1848
  • [40] Identification of freshwater zooplankton species using protein profiling and principal component analysis
    Hynek, Radovan
    Kuckova, Stepanka
    Cejnar, Pavel
    Junkova, Petra
    Prikryl, Ivo
    Ambrozova, Jana Rihova
    LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2018, 16 (03): : 199 - 204