Identification of faulty sensors using principal component analysis

被引:395
|
作者
Dunia, R
Qin, SJ
Edgar, TF
McAvoy, TJ
机构
[1] UNIV TEXAS,DEPT CHEM ENGN,AUSTIN,TX 78712
[2] FISHER ROSEMOUNT SYST,AUSTIN,TX 78754
[3] UNIV MARYLAND,DEPT CHEM ENGN,COLLEGE PK,MD 20742
关键词
D O I
10.1002/aic.690421011
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Even though there has been a recent interest in the use of principal component analysis (PCA) for sensor fault detection and identification, few identification schemes for faulty sensors have considered the possibility of an abnormal operating condition of the plant. This article presents the use of PCA for sensor fault identification via reconstruction. The principal component model captures measurement correlations and reconstructs each variable by using iterative substitution and optimization. The transient behavior of a number of sensor faults in various types of residuals is analyzed. A senor validity inner (SVI) is proposed to determine the status of each sensor. On-line implementation of the SVI is examined for different types of sensor faults. The way the index is filtered represents an important tuning parameter for sensor fault identification. Ail example using boiler process data demonstrates attractive features of the SVI.
引用
收藏
页码:2797 / 2812
页数:16
相关论文
共 50 条
  • [21] A novel algorithm for automatic species identification using principal component analysis
    Sen, S
    Narasimhan, S
    Konar, A
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2005, 3776 : 605 - 610
  • [22] Resonance Based Radar Target Identification Using Principal Component Analysis
    Chen, W. C.
    Shuley, N.
    APMC: 2008 ASIA PACIFIC MICROWAVE CONFERENCE (APMC 2008), VOLS 1-5, 2008, : 2402 - 2405
  • [23] Identification of informative performance traits in swine using principal component analysis
    Barbosa, L
    Lopes, PS
    Regazzi, AJ
    Guimaraes, SEF
    Torres, RA
    ARQUIVO BRASILEIRO DE MEDICINA VETERINARIA E ZOOTECNIA, 2005, 57 (06) : 805 - 810
  • [24] Fault identification for process monitoring using kernel principal component analysis
    Cho, JH
    Lee, JM
    Choi, SW
    Lee, D
    Lee, IB
    CHEMICAL ENGINEERING SCIENCE, 2005, 60 (01) : 279 - 288
  • [25] Genomic data mining for species identification using principal component analysis
    Sen, S
    Narasimhan, S
    Konar, A
    Chakraborty, UK
    PROCEEDINGS OF THE 8TH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1-3, 2005, : 1256 - 1259
  • [26] Robust Speaker Identification Using Ensembles of Kernel Principal Component Analysis
    Yang, Il-Ho
    Kim, Min-Seok
    So, Byung-Min
    Kim, Myung-Jae
    Yu, Ha-Jin
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 71 - 78
  • [27] Internal Structure Identification of Random Process Using Principal Component Analysis
    Zhang, Mengqiu
    Kennedy, Rodney A.
    Abhayapala, Thushara D.
    Zhang, Wen
    2010 4TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2010,
  • [28] Principal component analysis in pig breeds identification
    Dan, Sanket
    Mandal, Satyendra Nath
    Ghosh, Pritam
    Mustafi, Subhranil
    Banik, Santanu
    INDIAN JOURNAL OF ANIMAL SCIENCES, 2023, 93 (04): : 401 - 405
  • [29] Modal parameter identification with principal component analysis
    Wang, Cheng
    Gou, Jin
    Bai, Junqing
    Yan, Guirong
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2013, 47 (11): : 97 - 104
  • [30] Glyphosate Pattern Recognition Using Microwave-Interdigitated Sensors and Principal Component Analysis
    Santillan-Rodriguez, Carlos R.
    Saenz-Hernandez, Renee Joselin
    Grijalva-Castillo, Cristina
    Barrientos-Juarez, Eutiquio
    Elizalde-Galindo, Jose Trinidad
    Matutes-Aquino, Jose
    AGRIENGINEERING, 2024, 6 (01): : 526 - 538