Identification of faulty sensors using principal component analysis

被引:395
|
作者
Dunia, R
Qin, SJ
Edgar, TF
McAvoy, TJ
机构
[1] UNIV TEXAS,DEPT CHEM ENGN,AUSTIN,TX 78712
[2] FISHER ROSEMOUNT SYST,AUSTIN,TX 78754
[3] UNIV MARYLAND,DEPT CHEM ENGN,COLLEGE PK,MD 20742
关键词
D O I
10.1002/aic.690421011
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Even though there has been a recent interest in the use of principal component analysis (PCA) for sensor fault detection and identification, few identification schemes for faulty sensors have considered the possibility of an abnormal operating condition of the plant. This article presents the use of PCA for sensor fault identification via reconstruction. The principal component model captures measurement correlations and reconstructs each variable by using iterative substitution and optimization. The transient behavior of a number of sensor faults in various types of residuals is analyzed. A senor validity inner (SVI) is proposed to determine the status of each sensor. On-line implementation of the SVI is examined for different types of sensor faults. The way the index is filtered represents an important tuning parameter for sensor fault identification. Ail example using boiler process data demonstrates attractive features of the SVI.
引用
收藏
页码:2797 / 2812
页数:16
相关论文
共 50 条
  • [1] Detection, isolation and reconstruction of faulty sensors using principal component analysis
    Bose, MSRK
    Kumar, GS
    Venkateswarlu, C
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2005, 12 (04) : 430 - 435
  • [2] Fault detection, identification, and reconstruction of faulty chemical gas sensors under drift conditions, using Principal Component Analysis and Multiscale-PCA
    Padilla, M.
    Perera, A.
    Montoliu, I.
    Chaudry, A.
    Persaud, K.
    Marco, S.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [3] Metal ion solutions identification using acoustic plate mode sensors and principal component analysis
    Josse, F
    Dahint, R
    Shah, S
    Houndegla, E
    CHEMICAL MICROSENSORS AND APPLICATIONS II, 1999, 3857 : 2 - 13
  • [4] System identification using augmented principal component analysis
    Vijaysai, P
    Gudi, RD
    Lakshminarayanan, S
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 4179 - 4184
  • [5] Identification of mitochondrial deficiency using principal component analysis
    Durrieu, G
    Letellier, T
    Antoch, J
    Deshouillers, JM
    Malgat, M
    Mazat, JP
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 1997, 174 (1-2) : 149 - 156
  • [6] Identification of mitochondrial deficiency using principal component analysis
    Gilles Durrieu
    Thierry Letellier
    Jaromír Antoch
    Jean-Marc Deshouillers
    Monique Malgat
    Jean-Pierre Mazat
    Molecular and Cellular Biochemistry, 1997, 174 : 149 - 156
  • [7] ON-LINE MONITORING OF GLUCOSE SENSORS USING PRINCIPAL COMPONENT ANALYSIS
    Seborg, D.
    Zhao, C.
    Dassau, E.
    Zisser, H.
    Doyle, F. J., III
    Jovanovic, L.
    DIABETES TECHNOLOGY & THERAPEUTICS, 2013, 15 : A82 - A82
  • [8] Voltammetric identification of antiarrhythmic medicines using principal component analysis
    Sidel'nikov, A. V.
    Zil'berg, R. A.
    Yarkaeva, Yu. A.
    Maistrenko, V. N.
    Kraikin, V. A.
    JOURNAL OF ANALYTICAL CHEMISTRY, 2015, 70 (10) : 1261 - 1266
  • [9] MATLAB Implementation of Face Identification using Principal Component Analysis
    Mahmood, Nasrul Humaimi
    Ariffin, Ismail
    Omar, Camallil
    Jaafar, Nur Sufiah
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 5402 - 5408
  • [10] Identification of the Isomers Using Principal Component Analysis (PCA) Method
    Kepceoglu, Abdullah
    Gundogdu, Yasemin
    Ledingham, Kenneth William David
    Kilic, Hamdi Sukur
    9TH INTERNATIONAL PHYSICS CONFERENCE OF THE BALKAN PHYSICAL UNION (BPU-9), 2016, 1722