A 2/3-approximation algorithm for vertex-weighted matching

被引:5
|
作者
Al-Herz, Ahmed [1 ]
Pothen, Alex [1 ]
机构
[1] Purdue Univ, Comp Sci Dept, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Vertex-weighted matching; Approximation algorithm; Heaviest unmatched neighbor; Augmenting path; Weight-increasing path; APPROXIMATION ALGORITHMS;
D O I
10.1016/j.dam.2019.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the maximum vertex-weighted matching problem (MVM) for non-bipartite graphs in which non-negative weights are assigned to the vertices of a graph and a matching that maximizes the sum of the weights of the matched vertices is desired. In earlier work we have described a 2/3-approximation algorithm for the MVM on bipartite graphs (Florin Dobrian et al., 2019). Here we show that a 2/3-approximation algorithm for MVM on non-bipartite graphs can be obtained by restricting the length of augmenting paths to at most three. The algorithm has time complexity O(m log + n log n), where n is the number of vertices, m is the number of edges, and is the maximum degree of a vertex. The approximation ratio of the algorithm is obtained by considering failed vertices, i.e., vertices that the approximation algorithm fails to match but the exact algorithm does. We show that there are two distinct heavier matched vertices that we can charge each failed vertex to. Our proof techniques characterize the structure of augmenting paths in a novel way. We have implemented the 2/3-approximation algorithm and show that it runs in under a minute on graphs with tens of millions of vertices and hundreds of millions of edges. We compare its performance with five other algorithms: an exact algorithm for MVM, an exact algorithm for the maximum edge-weighted matching (MEM) problem, as well as three approximation algorithms. The approximation algorithms include a 1/2 approximation algorithm for MVM, and (2/3 - E)-and (1 - E)-approximation algorithms for the MEM. In our test set of nineteen problems, there are graphs on which the exact algorithms fail to terminate in 100 hours. In addition, the new 2/3-approximation algorithm for MVM outperforms the other approximation algorithms by either being faster (often by orders of magnitude) or obtaining better weights. (c) 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:46 / 67
页数:22
相关论文
共 50 条
  • [11] VERTEX-WEIGHTED GRAPHS AND THEIR APPLICATIONS
    Knisley, Debra J.
    Knisley, Jeff R.
    UTILITAS MATHEMATICA, 2014, 94 : 237 - 249
  • [12] Vertex-weighted realizations of graphs
    Bar-Noy, Amotz
    Peleg, David
    Rawitz, Dror
    THEORETICAL COMPUTER SCIENCE, 2020, 807 : 56 - 72
  • [13] Vertex-weighted realizations of graphs
    Bar-Noy, Amotz
    Peleg, David
    Rawitz, Dror
    Peleg, David (david.peleg@weizmann.ac.il), 1600, Elsevier B.V. (807): : 56 - 72
  • [14] A linear time algorithm for the nullity of vertex-weighted block graphs
    Singh, Ranveer
    Shaked-Monderer, Naomi
    Berman, Avi
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 61 - 70
  • [15] Vertex-Weighted Matching in Two-Directional Orthogonal Ray Graphs
    Plaxton, C. Gregory
    ALGORITHMS AND COMPUTATION, 2013, 8283 : 524 - 534
  • [16] On distances in vertex-weighted trees
    Cai, Qingqiong
    Cao, Fuyuan
    Li, Tao
    Wang, Hua
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 333 : 435 - 442
  • [17] Online Vertex-Weighted Bipartite Matching and Single-Bid Budgeted Allocations
    Aggarwal, Gagan
    Goel, Gagan
    Karande, Chinmay
    Mehta, Aranyak
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 1253 - 1264
  • [18] Integrated Crossover Based Evolutionary Algorithm for Coloring Vertex-Weighted Graphs
    Boz, Betul
    Sungu, Gizem
    IEEE ACCESS, 2020, 8 : 126743 - 126759
  • [19] Nonsingular (vertex-weighted) block graphs
    Singh, Ranveer
    Zheng, Cheng
    Shaked-Monderer, Naomi
    Berman, Abraham
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 : 138 - 156
  • [20] A 3-approximation algorithm for finding optimum 4,5-vertex-connected spanning subgraphs
    Dinitz, Y
    Nutov, Z
    JOURNAL OF ALGORITHMS, 1999, 32 (01) : 31 - 40