VERTEX-WEIGHTED GRAPHS AND THEIR APPLICATIONS

被引:0
|
作者
Knisley, Debra J. [1 ]
Knisley, Jeff R. [1 ]
机构
[1] E Tennessee State Univ, Dept Math & Stat, Inst Quantitat Biol, Johnson City, TN 37614 USA
关键词
NETWORKS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our recent work in computational biology, our approach to modeling protein structures requires that each vertex be weighted by a vector of weights. This motivates the results we present here. We show that many graphical invariants can be generalized to vertex weights by replacing the maximum(minimum) cardinality of a vertex set with a sum over the vertex weights. We also generalize the Laplacian of a vertex-weighted graph to include vector-weighted vertices, including generalizing some spectral results.
引用
收藏
页码:237 / 249
页数:13
相关论文
共 50 条
  • [1] The ρ-moments of vertex-weighted graphs
    Chang, Caibing
    Ren, Haizhen
    Deng, Zijian
    Deng, Bo
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 400
  • [2] Vertex-weighted realizations of graphs
    Bar-Noy, Amotz
    Peleg, David
    Rawitz, Dror
    THEORETICAL COMPUTER SCIENCE, 2020, 807 : 56 - 72
  • [3] Vertex-weighted realizations of graphs
    Bar-Noy, Amotz
    Peleg, David
    Rawitz, Dror
    Peleg, David (david.peleg@weizmann.ac.il), 1600, Elsevier B.V. (807): : 56 - 72
  • [4] Nonsingular (vertex-weighted) block graphs
    Singh, Ranveer
    Zheng, Cheng
    Shaked-Monderer, Naomi
    Berman, Abraham
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 : 138 - 156
  • [5] On rectilinear duals for vertex-weighted plane graphs
    de Berg, M
    Mumford, E
    Speckmann, B
    GRAPH DRAWING, 2006, 3843 : 61 - 72
  • [6] On rectilinear duals for vertex-weighted plane graphs
    de Berg, Mark
    Mumford, Elena
    Speckmann, Bettina
    DISCRETE MATHEMATICS, 2009, 309 (07) : 1794 - 1812
  • [7] Max-Coloring of Vertex-Weighted Graphs
    Hsiang-Chun Hsu
    Gerard Jennhwa Chang
    Graphs and Combinatorics, 2016, 32 : 191 - 198
  • [8] Max-Coloring of Vertex-Weighted Graphs
    Hsu, Hsiang-Chun
    Chang, Gerard Jennhwa
    GRAPHS AND COMBINATORICS, 2016, 32 (01) : 191 - 198
  • [9] Algorithms for Densest Subgraphs of Vertex-Weighted Graphs
    Liu, Zhongling
    Chen, Wenbin
    Li, Fufang
    Qi, Ke
    Wang, Jianxiong
    MATHEMATICS, 2024, 12 (14)
  • [10] Vertex-Weighted Wiener Polynomials for Composite Graphs
    Doslic, Tomislav
    ARS MATHEMATICA CONTEMPORANEA, 2008, 1 (01) : 66 - 80