An Extended Social Force Model via Pedestrian Heterogeneity Affecting the Self-Driven Force

被引:39
|
作者
Wu, Wenhan [1 ]
Chen, Maoyin [1 ]
Li, Jinghai [1 ]
Liu, Binglu [1 ]
Zheng, Xiaoping [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Crowd dynamics; social force model; pedestrian heterogeneity; evacuation management; nonlinear system; CROWD; SIMULATION; EVACUATION; BEHAVIOR; DISABILITIES; MECHANISMS; DYNAMICS; ESCAPE; STRESS;
D O I
10.1109/TITS.2021.3074914
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As one of the most effective models for human collective motion, the social force model (SFM) simulates the dynamics of crowd evacuation from a microscopic perspective. However, it treats pedestrians as the homogeneous rigid particles, whereas pedestrians are diverse and heterogeneous in real life. Therefore, this paper develops a pedestrian heterogeneity-based social force model (PHSFM) by introducing physique and mentality coefficients into the SFM to quantify physiology and psychology attributes of pedestrians, respectively. These two coefficients can affect the self-driven force by changing the desired speed, thus characterizing the pedestrian heterogeneity more realistically. Simulation experiments demonstrate that the PHSFM designs a more general and accurate theoretical framework for the expression of pedestrian heterogeneity, which realizes special behavior patterns caused by individual diversity. Furthermore, our model provides effective guidelines for the management of crowds in potential research fields such as transportation, architectural science and safety science.
引用
收藏
页码:7974 / 7986
页数:13
相关论文
共 50 条
  • [21] Some Indications on How to Calibrate the Social Force Model of Pedestrian Dynamics
    Kretz, Tobias
    Lohmiller, Jochen
    Sukennik, Peter
    TRANSPORTATION RESEARCH RECORD, 2018, 2672 (20) : 228 - 238
  • [22] A Modified Social Force Model for Pedestrian Behavior Simulation at Signalized Crosswalks
    Zeng, Weiliang
    Nakamura, Hideki
    Chen, Peng
    9TH INTERNATIONAL CONFERENCE ON TRAFFIC AND TRANSPORTATION STUDIES (ICTTS 2014), 2014, 138 : 521 - 530
  • [23] A Social Force Model Considering Falls and Injuries of Pedestrian Counterflow on Slopes
    Hu Z.
    Wei Y.
    Zeng T.
    Ma Y.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2023, 58 (05): : 1100 - 1109
  • [24] Social Force Model Describing Pedestrian and Cyclist Behaviour in Shared Spaces
    Yuan, Yufei
    Goni-Ros, Bernat
    van Oijen, Tim P.
    Daamen, Winnie
    Hoogendoorn, Serge P.
    TRAFFIC AND GRANULAR FLOW '17, 2019, : 477 - 486
  • [25] Social Force as a Microscopic Simulation Model for Pedestrian Behavior in Crowd Evacuation
    Abu Bakar, Noor Akma
    Majid, Mazlina Abdul
    Adam, Khalid
    Allegra, Mario
    ADVANCED SCIENCE LETTERS, 2018, 24 (10) : 7611 - 7616
  • [26] Application of social force model to pedestrian behavior analysis at signalized crosswalk
    Zeng, Weiliang
    Chen, Peng
    Nakamura, Hideki
    Iryo-Asano, Miho
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2014, 40 : 143 - 159
  • [27] Improved social force model considering pedestrian deceleration to avoid collision
    Li, Shan-Shan
    Qian, Da-Lin
    Wang, Jiu-Zhou
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2012, 42 (03): : 623 - 628
  • [28] A social force evacuation model driven by video data
    Liu, Baoxi
    Liu, Hong
    Zhang, Hao
    Qin, Xin
    SIMULATION MODELLING PRACTICE AND THEORY, 2018, 84 : 190 - 203
  • [29] Centrifugal force model for pedestrian dynamics
    Yu, WJ
    Chen, R
    Dong, LY
    Dai, SQ
    PHYSICAL REVIEW E, 2005, 72 (02):
  • [30] A Social Force Based Pedestrian Motion Model Considering Multi-Pedestrian Interaction with a Vehicle
    Yang, Dongfang
    Ozguner, Umit
    Redmill, Keith
    ACM TRANSACTIONS ON SPATIAL ALGORITHMS AND SYSTEMS, 2020, 6 (02)