Nonparametric estimation of survival functions by means of partial exchangeability structures

被引:1
|
作者
Giudici, P
Mezzetti, M
机构
[1] Univ Pavia, Dipartimento Econ Polit & Metodi Quantitat, I-27100 Pavia, Italy
[2] European Inst Oncol, I-20141 Milan, Italy
关键词
beta processes; hierarchical partition models; posterior probabilities; survival analysis;
D O I
10.1007/BF02565105
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the causal analysis of survival data a time-based response is related to a set of explanatory variables. However, selection and proper design of the latter may become a difficult task, particularly in the preliminary stage, when the information is limited. We propose an alternative nonparametric approach to estimate the survival function which allows one to evaluate the relative importance of each potential explanatory variable, in a simple and exploratory fashion. To achieve this aim, each of the explanatory variables is used to partition the observed survival times. The observations are assumed to be partially exchangeable according to such partition. We then consider, conditionally on each partition, a hierarchical nonparametric Bayesian model on the hazard functions. In order to measure the importance of each explanatory variable, we derive the posterior probability of the corresponding partition. Such probabilities are then employed to estimate the hazard functions by averaging the estimated conditional hazard over the set of all entertained partitions.
引用
收藏
页码:111 / 132
页数:22
相关论文
共 50 条
  • [21] Nonparametric estimation of nonadditive random functions
    Matzkin, RL
    ECONOMETRICA, 2003, 71 (05) : 1339 - 1375
  • [22] Nonparametric estimation and testing in survival models
    Läuter, H
    Liero, H
    PROBABILITY, STATISTICS AND MODELLING IN PUBLIC HEALTH, 2006, : 319 - +
  • [23] Nonparametric estimation of a recurrent survival function
    Wang, MC
    Chang, SH
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (445) : 146 - 153
  • [24] Nonparametric estimation of multiple structures with outliers
    Zhang, Wei
    Kosecka, Jana
    DYNAMICAL VISION, 2007, 4358 : 60 - +
  • [25] NONPARAMETRIC MAXIMUM-LIKELIHOOD ESTIMATION OF SURVIVAL FUNCTIONS WITH A GENERAL STOCHASTIC ORDERING AND ITS DUAL
    DYKSTRA, RL
    FELTZ, CJ
    BIOMETRIKA, 1989, 76 (02) : 331 - 341
  • [26] Nonparametric Estimation of Edge Values of Regression Functions
    Galkowski, Tomasz
    Pawlak, Miroslaw
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, (ICAISC 2016), PT II, 2016, 9693 : 49 - 59
  • [27] Nonparametric estimation of covariance functions by model selection
    Bigot, Jeremie
    Biscay, Rolando
    Loubes, Jean-Michel
    Muniz-Alvarez, Lilian
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 822 - 855
  • [28] Nonparametric estimation of piecewise smooth regression functions
    Kohler, M
    STATISTICS & PROBABILITY LETTERS, 1999, 43 (01) : 49 - 55
  • [29] NONPARAMETRIC-ESTIMATION OF RELATIVE MORTALITY FUNCTIONS
    BRESLOW, N
    LANGHOLZ, B
    JOURNAL OF CHRONIC DISEASES, 1987, 40 : S89 - S99
  • [30] Nonparametric estimation of copula functions for dependence modelling
    Chen, Song Xi
    Huang, Tzee-Ming
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (02): : 265 - 282