ON WEAK CONVERGENCE OF THE DOUGLAS-RACHFORD METHOD

被引:105
|
作者
Svaiter, B. F. [1 ]
机构
[1] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
Douglas-Rachford method; weak convergence; PROJECTIVE SPLITTING METHODS; MONOTONE; SUM;
D O I
10.1137/100788100
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove that the sequences generated by the Douglas-Rachford method converge weakly to zero of the sum of two maximal monotone operators using new tools introduced in recent works of Eckstein and the author. The assumption of maximal monotonicity of the sum is also removed, using a recent result of Bauschke.
引用
收藏
页码:280 / 287
页数:8
相关论文
共 50 条
  • [21] CONVERGENCE ANALYSIS OF DOUGLAS-RACHFORD SPLITTING METHOD FOR "STRONGLY plus WEAKLY" CONVEX PROGRAMMING
    Guo, Ke
    Han, Deren
    Yuan, Xiaoming
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) : 1549 - 1577
  • [22] On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers
    He, Bingsheng
    Yuan, Xiaoming
    NUMERISCHE MATHEMATIK, 2015, 130 (03) : 567 - 577
  • [23] CONVERAGENCE OF RANDOMIZED DOUGLAS-RACHFORD METHOD FOR LINEAR SYSTEM
    Hu, Leyu
    Cai, Xingju
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2020, 10 (04): : 463 - 474
  • [24] A parameterized Douglas-Rachford algorithm
    Wang, Dongying
    Wang, Xianfu
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (03) : 839 - 869
  • [25] On the Range of the Douglas-Rachford Operator
    Bauschke, Heinz H.
    Hare, Warren L.
    Moursi, Walaa M.
    MATHEMATICS OF OPERATIONS RESEARCH, 2016, 41 (03) : 884 - 897
  • [26] Douglas-Rachford is the best projection method in its family
    Dao, Minh N.
    Dressler, Mareike
    Liao, Hongzhi
    Roshchina, Vera
    OPTIMIZATION, 2024,
  • [27] A Remark on the Convergence of the Douglas-Rachford Iteration in a Non-convex Setting
    Giladi, Ohad
    SET-VALUED AND VARIATIONAL ANALYSIS, 2018, 26 (02) : 207 - 225
  • [28] Tight global linear convergence rate bounds for Douglas-Rachford splitting
    Giselsson, Pontus
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (04) : 2241 - 2270
  • [29] THE CYCLIC DOUGLAS-RACHFORD METHOD FOR INCONSISTENT FEASIBILITY PROBLEMS
    Borwein, Jonathan M.
    Tam, Matthew K.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (04) : 573 - 584
  • [30] Convergence of an Inertial Shadow Douglas-Rachford Splitting Algorithm for Monotone Inclusions
    Fan, Jingjing
    Qin, Xiaolong
    Tan, Bing
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (14) : 1627 - 1644