Direct Observation of Atomic Structures and Chemical States of Active and Inactive Dopant Sites in Mg-Doped GaN

被引:7
|
作者
Tang, Jingmin [1 ,2 ]
Takeuchi, Soichiro [3 ]
Tanaka, Masaki [3 ]
Tomita, Hiroto [3 ]
Hashimoto, Yusuke [3 ]
Nagata, Takahiro [2 ]
Chen, Jun [2 ]
Ohkochi, Takuo [2 ]
Kotani, Yoshinori [4 ]
Matsushita, Tomohiro [2 ,4 ]
Yamashita, Yoshiyuki [1 ,2 ]
机构
[1] Natl Inst Mat Sci NIMS, Tsukuba, Ibaraki 3050044, Japan
[2] Nara Inst Sci & Technol NAIST, Ikoma, Nara 6300192, Japan
[3] Kyushu Univ, Fac Engn, Dept Mat Phys & Chem, Fukuoka 8190395, Japan
[4] Japan Synchrotron Radiat Res Inst JASRI, Sayo, Hyogo 6795198, Japan
关键词
GaN; Mg-doped GaN; photoelectron hologram; reconstructed; 3D; active and inactive; PHOTOELECTRON; ELECTRON; NITRIDE; HOLOGRAPHY; OPTOELECTRONICS; DEFECTS; LAYERS;
D O I
10.1021/acsaelm.2c00912
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We employed photoelectron spectroscopy (PES) and photoelectron holography (PEH) to clarify the atomic structures and chemical states in the active and inactive dopant states of Mg-doped GaN. Due to the lack of available direct evidence, this has been a controversial issue. From PES, we found that two chemical states existed in the Mg-doped GaN: One is an active dopant state, and the other is an inactive state. We employed PEH to investigate the two observed chemical states, indicating that the active state could be attributed to a Mg atom substituting a Ga atom in the Mg-doped GaN structure (Mg-Ga). The inactive state, on the other hand, was considered to be a disordered structure, an amorphous structure, defects, and/or MgGa bonding with a H atom in that structure.
引用
收藏
页码:5087 / 5087
页数:1
相关论文
共 50 条
  • [21] Pyramidal defects in highly Mg-doped GaN:: atomic structure and influence on optoelectronic properties
    Leroux, M
    Vennéguès, P
    Dalmasso, S
    de Mierry, P
    Lorenzini, P
    Damilano, B
    Beaumont, B
    Gibart, P
    Massies, J
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2004, 27 (1-3): : 259 - 262
  • [22] Atomic structure of pyramidal defects in Mg-doped GaN -: art. no. 235214
    Vennéguès, P
    Leroux, M
    Dalmasso, S
    Benaissa, M
    De Mierry, P
    Lorenzini, P
    Damilano, B
    Beaumont, B
    Massies, J
    Gibart, P
    PHYSICAL REVIEW B, 2003, 68 (23)
  • [23] Normally OFF Trench CAVET With Active Mg-Doped GaN as Current Blocking Layer
    Ji, Dong
    Laurent, Matthew A.
    Agarwal, Anchal
    Li, Wenwen
    Mandal, Saptarshi
    Keller, Stacia
    Chowdhury, Srabanti
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (03) : 805 - 808
  • [24] Investigation of defect levels in Mg-doped GaN Schottky structures by thermal admittance spectroscopy
    Nguyen, ND
    Germain, M
    Schmeits, M
    Schineller, B
    Heuken, M
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2001, 228 (02): : 385 - 389
  • [25] Hole transport in Mg-doped GaN epilayers grown by metalorganic chemical vapor deposition
    Kim, KS
    Cheong, MG
    Hong, CH
    Yang, GM
    Lim, KY
    Suh, EK
    Lee, HJ
    APPLIED PHYSICS LETTERS, 2000, 76 (09) : 1149 - 1151
  • [26] Effects of Mg accumulation on chemical and electronic properties of Mg-doped p-type GaN surface
    Hashizume, T
    JOURNAL OF APPLIED PHYSICS, 2003, 94 (01) : 431 - 436
  • [27] Mg-doped ZnO radial spherical structures via chemical vapor deposition
    Jiangqiang Peng
    Jian Guo
    Shulong Ding
    Qiao Xu
    Hang Li
    Xuwei Tan
    Xian Zhao
    Rare Metals, 2011, 30 : 292 - 297
  • [28] Mg-doped ZnO radial spherical structures via chemical vapor deposition
    PENG Jiangqiang
    Rare Metals, 2011, 30 (03) : 292 - 297
  • [29] Mg-doped ZnO radial spherical structures via chemical vapor deposition
    Peng Jiangqiang
    Guo Jian
    Ding Shulong
    Xu Qiao
    Li Hang
    Tan Xuwei
    Zhao Xian
    RARE METALS, 2011, 30 (03) : 292 - 297
  • [30] Characterization of Mg-doped GaN micro-crystals grown by direct reaction of gallium and ammonia
    Lee, SH
    Nahm, KS
    Suh, EK
    Hong, MH
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2001, 228 (02): : 371 - 373