wMB-PROPERTY OF ORDER p IN BANACH SPACES

被引:0
|
作者
Esfahani, Manijeh Bahreini [1 ]
机构
[1] Univ Khansar, Dept Math, Khansar, Iran
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2022年 / 46卷 / 01期
关键词
p-Convergent operators; weakly-p-L-sets; Dunford-Pettis property of order p; DUNFORD-PETTIS SETS; OPERATORS;
D O I
10.46793/KgJMat2201.029E
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new property of Banach spaces called wMB-property of order p (1 <= p < infinity). A necessary and sufficient condition for a Banach space to have the wMB-property of order p is given. We study p-convergent operators and weakly-p-L-sets. Banach spaces with the wMB-property of order p are characterized. Also, the Dunford-Pettis property of order p and DP*-property of order p are studied in Banach spaces. Finally we show the relation between Pelczynski's property (V) and wMB-property of order p.
引用
收藏
页码:29 / 37
页数:9
相关论文
共 50 条
  • [31] A Gaussian average property of Banach spaces
    Casazza, PG
    Nielsen, NJ
    ILLINOIS JOURNAL OF MATHEMATICS, 1997, 41 (04) : 559 - 576
  • [32] A nonconvex separation property in Banach spaces
    Jonathan M. Borwein
    Alejandro Jofré
    Mathematical Methods of Operations Research, 1998, 48 : 169 - 179
  • [33] On the bounded approximation property in Banach spaces
    Jesús M. F. Castillo
    Yolanda Moreno
    Israel Journal of Mathematics, 2013, 198 : 243 - 259
  • [34] On a new geometric property for Banach spaces
    T. S. S. R. K. Rao
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 1997, 107 : 35 - 42
  • [35] On the near differentiability property of Banach spaces
    Dowling, Patrick N.
    Robdera, Mangatiana A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) : 1300 - 1310
  • [36] The average distance property of Banach spaces
    Lin, PK
    ARCHIV DER MATHEMATIK, 1997, 68 (06) : 496 - 502
  • [37] BOCHNER PROPERTY IN BANACH-SPACES
    NAIKNIMBALKAR, U
    ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1981, 17 (01): : 1 - 19
  • [38] ON THE BOUNDED APPROXIMATION PROPERTY IN BANACH SPACES
    Castillo, Jesus M. F.
    Moreno, Yolanda
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 198 (01) : 243 - 259
  • [39] DAUGAVET PROPERTY AND SEPARABILITY IN BANACH SPACES
    Rueda Zoca, Abraham
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (01): : 68 - 84
  • [40] APPROXIMATIVE RECONSTRUCTION PROPERTY IN BANACH SPACES
    Tara
    Shekhar, Chander
    Rathore, G. S.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 14 (01): : 1 - 15