wMB-PROPERTY OF ORDER p IN BANACH SPACES

被引:0
|
作者
Esfahani, Manijeh Bahreini [1 ]
机构
[1] Univ Khansar, Dept Math, Khansar, Iran
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2022年 / 46卷 / 01期
关键词
p-Convergent operators; weakly-p-L-sets; Dunford-Pettis property of order p; DUNFORD-PETTIS SETS; OPERATORS;
D O I
10.46793/KgJMat2201.029E
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new property of Banach spaces called wMB-property of order p (1 <= p < infinity). A necessary and sufficient condition for a Banach space to have the wMB-property of order p is given. We study p-convergent operators and weakly-p-L-sets. Banach spaces with the wMB-property of order p are characterized. Also, the Dunford-Pettis property of order p and DP*-property of order p are studied in Banach spaces. Finally we show the relation between Pelczynski's property (V) and wMB-property of order p.
引用
收藏
页码:29 / 37
页数:9
相关论文
共 50 条
  • [21] Weak fixed point property of order p in Banach lattices
    Ardakani, H.
    Fallahi, K.
    Rajavzade, S.
    POSITIVITY, 2024, 28 (04)
  • [22] The Coarse ?p-Novikov Conjecture and Banach Spaces with Property(H)
    Huan WANG
    Qin WANG
    Chinese Annals of Mathematics,Series B, 2024, (02) : 193 - 220
  • [23] On the p-Dunford-Pettis relatively compact property of Banach spaces
    Ghenciu, I.
    ANALYSIS MATHEMATICA, 2024, 50 (02) : 515 - 535
  • [24] The Coarse ℓp-Novikov Conjecture and Banach Spaces with Property (H)
    Wang, Huan
    Wang, Qin
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2024, 45 (02) : 193 - 220
  • [25] ON THE MAJORANT PROPERTY IN BANACH-SPACES
    DECHAMPSGONDIM, M
    LUSTPIQUARD, F
    QUEFFELEC, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 293 (02): : 117 - 120
  • [26] ON BANACH-SPACES WITH MAZURS PROPERTY
    LEUNG, DH
    GLASGOW MATHEMATICAL JOURNAL, 1991, 33 : 51 - 54
  • [27] Banach spaces with the Daugavet property, and the centralizer
    Guerrero, Julio Becerra
    Rodriguez-Palacios, Angel
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (08) : 2294 - 2302
  • [28] The average distance property of Banach spaces
    Pei-Kee Lin
    Archiv der Mathematik, 1997, 68 : 496 - 502
  • [29] BALL INTERSECTION PROPERTY FOR BANACH SPACES
    NUSSBAUM, RD
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1971, 19 (10): : 931 - &
  • [30] The local property (R) in Banach spaces
    Cui, YN
    Thompson, B
    Yuan, G
    FIXED POINT THEORY AND APPLICATIONS, VOL 3, 2002, : 43 - 52