Characterization of Sparse-Array detection Photoacoustic Tomography using the Singular Value Decomposition

被引:1
|
作者
Chaudhary, G. [1 ]
Roumeliotis, M. [3 ,4 ]
Ephrat, P. [3 ,4 ]
Stodilka, R. [3 ,4 ]
Carson, J. J. L. [3 ,4 ]
Anastasio, M. A. [1 ,2 ]
机构
[1] IIT, Med Imaging Res Ctr, Dept Elect & Comp Engn, Chicago, IL 60616 USA
[2] IIT, Med Imaging Res Ctr, Dept Biomed Engn, Chicago, IL 60616 USA
[3] St Josephs Hlth Care, Lawson Hlth Res Inst, Imaging Program, London, ON N6A 4V2, Canada
[4] Univ West Ontario, Dept Med Biophys, London, ON N6A 5C1, Canada
来源
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2010 | 2010年 / 7564卷
关键词
Photoacoustic tomography; singular value decomposition; LANCZOS algorithm; pseudo-inverse solution;
D O I
10.1117/12.842663
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A photoacoustic tomography (PAT) method that employs a sparse two-dimentional (2D) array of detector elements has recently been employed to reconstruct images of simple objects from highly incomplete measurement data. However, there remains an important need to understand what type of object features can be reliably reconstructed from such a system. In this work, we numerically compute the singular value decomposition (SVD) of different system matrices that are relevant to implementations of sparse-array PAT. For a given number and arrangement of measurement transducers, this will reveal the type of object features that can reliably be reconstructed as well as those that are invisible to the imaging system.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition
    Roumeliotis, Michael
    Stodilka, Robert Z.
    Anastasio, Mark A.
    Chaudhary, Govind
    Al-Aabed, Hazem
    Ng, Eldon
    Immucci, Andrea
    Carson, Jeffrey J. L.
    OPTICS EXPRESS, 2010, 18 (11): : 11406 - 11417
  • [42] Application of Generalized Singular Value Decomposition to ionospheric tomography
    Bhuyan, K
    Singh, SB
    Bhuyan, PK
    ANNALES GEOPHYSICAE, 2004, 22 (10) : 3437 - 3444
  • [43] Segmentation and characterization of acoustic event spectrograms using singular value decomposition
    Mulimani, Manjunath
    Koolagudi, Shashidhar G.
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 120 : 413 - 425
  • [44] Digital Video Watermarking Using Motion Detection and Singular Value Decomposition
    Sinha, Sanjana
    Pramanick, Swarnali
    Jagatramka, Ankul
    Bardhan, Prajnat
    Kole, Dipak K.
    Chakraborty, Aruna
    Communications in Computer and Information Science, 2011, 205 M4D : 229 - 238
  • [46] Image Forgery Detection Using Singular Value Decomposition with Some Attacks
    Rathore, Neeraj Kumar
    Jain, Neelesh Kumar
    Shukla, Prashant Kumar
    Rawat, UmaShankar
    Dubey, Rachana
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2021, 44 (04): : 331 - 338
  • [47] Digital Video Watermarking Using Motion Detection and Singular Value Decomposition
    Sinha, Sanjana
    Pramanick, Swarnali
    Jagatramka, Ankul
    Bardhan, Prajnat
    Kole, Dipak K.
    Chakraborty, Aruna
    ADVANCES IN DIGITAL IMAGE PROCESSING AND INFORMATION TECHNOLOGY, 2011, 205 : 229 - 238
  • [48] Image Forgery Detection Using Singular Value Decomposition with Some Attacks
    Neeraj Kumar Rathore
    Neelesh Kumar Jain
    Prashant Kumar Shukla
    UmaShankar Rawat
    Rachana Dubey
    National Academy Science Letters, 2021, 44 : 331 - 338
  • [49] ADC characterization based on singular value decomposition
    Zhang, JQ
    Ovaska, SJ
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2002, 51 (01) : 138 - 143
  • [50] Plagiarism detection based on Singular Value Decomposition
    Ceska, Zdenek
    ADVANCES IN NATURAL LANGUAGE PROCESSING, PROCEEDINGS, 2008, 5221 : 108 - 119