Characterization of Sparse-Array detection Photoacoustic Tomography using the Singular Value Decomposition

被引:1
|
作者
Chaudhary, G. [1 ]
Roumeliotis, M. [3 ,4 ]
Ephrat, P. [3 ,4 ]
Stodilka, R. [3 ,4 ]
Carson, J. J. L. [3 ,4 ]
Anastasio, M. A. [1 ,2 ]
机构
[1] IIT, Med Imaging Res Ctr, Dept Elect & Comp Engn, Chicago, IL 60616 USA
[2] IIT, Med Imaging Res Ctr, Dept Biomed Engn, Chicago, IL 60616 USA
[3] St Josephs Hlth Care, Lawson Hlth Res Inst, Imaging Program, London, ON N6A 4V2, Canada
[4] Univ West Ontario, Dept Med Biophys, London, ON N6A 5C1, Canada
来源
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2010 | 2010年 / 7564卷
关键词
Photoacoustic tomography; singular value decomposition; LANCZOS algorithm; pseudo-inverse solution;
D O I
10.1117/12.842663
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A photoacoustic tomography (PAT) method that employs a sparse two-dimentional (2D) array of detector elements has recently been employed to reconstruct images of simple objects from highly incomplete measurement data. However, there remains an important need to understand what type of object features can be reliably reconstructed from such a system. In this work, we numerically compute the singular value decomposition (SVD) of different system matrices that are relevant to implementations of sparse-array PAT. For a given number and arrangement of measurement transducers, this will reveal the type of object features that can reliably be reconstructed as well as those that are invisible to the imaging system.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Partially-adaptive array design using the singular value decomposition
    Yang, H
    Ingram, MA
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 2864 - 2867
  • [22] Broadband sparse-array blind deconvolution using frequency-difference beamforming
    Abadi, Shima H.
    Song, H. C.
    Dowling, David R.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 132 (05): : 3018 - 3029
  • [23] Sparse-smooth regularized singular value decomposition
    Hong, Zhaoping
    Lian, Heng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 117 : 163 - 174
  • [24] Gene Extraction Based on Sparse Singular Value Decomposition
    Kong, Xiangzhen
    Liu, Jinxing
    Zheng, Chunhou
    Shang, Junliang
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT I, 2016, 9771 : 285 - 293
  • [25] SPARSE CODE MULTIPLE ACCESS CODEBOOK DESIGN USING SINGULAR VALUE DECOMPOSITION
    Vidal Beltran, S.
    Carreno Aguilera, R.
    Lopez Bonilla, J. L.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [26] SPARSE TWO-DIMENSIONAL SINGULAR VALUE DECOMPOSITION
    Hou, Junhui
    Chen, Jie
    Chau, Lap-Pui
    He, Ying
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [27] Enhancement of in vivo cardiac photoacoustic signal specificity using spatiotemporal singular value decomposition
    Al Mukaddim, Rashid
    Weichmann, Ashley M.
    Mitchell, Carol C.
    Varghese, Tomy
    JOURNAL OF BIOMEDICAL OPTICS, 2021, 26 (04)
  • [28] Interior Tomography With Continuous Singular Value Decomposition
    Jin, Xin
    Katsevich, Alexander
    Yu, Hengyong
    Wang, Ge
    Li, Liang
    Chen, Zhiqiang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (11) : 2108 - 2119
  • [29] Singular Value Decomposition Processing for In vivo Cardiac Photoacoustic Imaging
    Al Mukaddim, Rashid
    Varghese, Tomy
    MEDICAL IMAGING 2021: ULTRASONIC IMAGING AND TOMOGRAPHY, 2021, 11602
  • [30] Gate Characterization Using Singular Value Decomposition: Foundations and Applications
    Wei, Sheng
    Nahapetian, Ani
    Nelson, Michael
    Koushanfar, Farinaz
    Potkonjak, Miodrag
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2012, 7 (02) : 765 - 773