A Generic Margulis Number for Hyperbolic 3-Manifolds

被引:0
|
作者
Shalen, Peter B. [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci MC 249, Chicago, IL 60607 USA
关键词
VOLUME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that 0.29 is a Margulis number for all but finitely many hyperbolic 3-manifolds. The finitely many exceptions are all closed.
引用
收藏
页码:103 / 109
页数:7
相关论文
共 50 条
  • [41] Generic knots in contact 3-manifolds
    Adachi, J
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (06) : 625 - 636
  • [42] HYPERBOLIC 3-MANIFOLDS AND CLUSTER ALGEBRAS
    Nagao, Kentaro
    Terashima, Yuji
    Yamazaki, Masahito
    NAGOYA MATHEMATICAL JOURNAL, 2019, 235 : 1 - 25
  • [43] Geometrically tame hyperbolic 3-manifolds
    Canary, Richard D.
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (02):
  • [44] Shrinkwrapping and the taming of hyperbolic 3-manifolds
    Calegari, D
    Gabai, D
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 19 (02) : 385 - 446
  • [45] Norms on the cohomology of hyperbolic 3-manifolds
    Brock, Jeffrey F.
    Dunfield, Nathan M.
    INVENTIONES MATHEMATICAE, 2017, 210 (02) : 531 - 558
  • [46] A finiteness theorem for hyperbolic 3-manifolds
    Biringer, Ian
    Souto, Juan
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 84 : 227 - 242
  • [47] Geodesic planes in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    Inventiones mathematicae, 2017, 209 : 425 - 461
  • [48] A census of cusped hyperbolic 3-manifolds
    Callahan, PJ
    Hildebrand, MV
    Weeks, JR
    MATHEMATICS OF COMPUTATION, 1999, 68 (225) : 321 - 332
  • [49] On the complexity and volume of hyperbolic 3-manifolds
    Thomas Delzant
    Leonid Potyagailo
    Israel Journal of Mathematics, 2013, 193 : 209 - 232
  • [50] Geodesic planes in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    INVENTIONES MATHEMATICAE, 2017, 209 (02) : 425 - 461