HYPERBOLIC 3-MANIFOLDS AND CLUSTER ALGEBRAS

被引:3
|
作者
Nagao, Kentaro [1 ]
Terashima, Yuji [2 ]
Yamazaki, Masahito [3 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi, Japan
[2] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo, Japan
[3] Univ Tokyo, Kavli Inst Phys & Math Universe, Tokyo, Japan
关键词
DILOGARITHM IDENTITIES; QUANTUM DILOGARITHM; MODULI SPACES; TRIANGULATIONS; QUIVERS; SYSTEMS;
D O I
10.1017/nmj.2017.39
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We advocate the use of cluster algebras and their-variables in the study of hyperbolic 3-manifolds. We study hyperbolic structures on the mapping tori of pseudo-Anosov mapping classes of punctured surfaces, and show that cluster-variables naturally give the solutions of the edge-gluing conditions of ideal tetrahedra. We also comment on the completeness of hyperbolic structures.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [1] Homotopy hyperbolic 3-manifolds are hyperbolic
    Gabai, D
    Meyerhoff, GR
    Thurston, N
    ANNALS OF MATHEMATICS, 2003, 157 (02) : 335 - 431
  • [2] Macfarlane hyperbolic 3-manifolds
    Quinn, Joseph A.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1603 - 1632
  • [3] Tubes in hyperbolic 3-manifolds
    Przeworski, A
    TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 103 - 122
  • [4] Horocycles in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 961 - 973
  • [5] Horocycles in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    Geometric and Functional Analysis, 2016, 26 : 961 - 973
  • [6] Systoles of hyperbolic 3-manifolds
    Adams, CC
    Reid, AW
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 128 : 103 - 110
  • [7] VOLUMES OF HYPERBOLIC 3-MANIFOLDS
    NEUMANN, WD
    ZAGIER, D
    TOPOLOGY, 1985, 24 (03) : 307 - 332
  • [8] Exceptional hyperbolic 3-manifolds
    Gabai, David
    Trnkova, Maria
    COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (03) : 703 - 730
  • [9] Balls in hyperbolic 3-manifolds
    Przeworski, A
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (01): : 161 - 171
  • [10] Isometric cusps in hyperbolic 3-manifolds
    Adams, CC
    MICHIGAN MATHEMATICAL JOURNAL, 1999, 46 (03) : 515 - 531