Visible quantum plasmonics from metallic nanodimers

被引:17
|
作者
Alpeggiani, F. [1 ,4 ]
D'Agostino, S. [2 ]
Sanvitto, D. [3 ]
Gerace, D. [1 ]
机构
[1] Univ Pavia, Dipartimento Fis, Via Bassi 6, I-27100 Pavia, Italy
[2] UNILE Ist Italiano Tecnol, Ctr Biomol Nanotechnol, I-73010 Arnesano, Italy
[3] CNR NANOTEC Inst Nanotechnol, Via Monteroni, I-73100 Lecce, Italy
[4] FOM Inst AMOLF, Sci Pk 104, NL-1098 XG Amsterdam, Netherlands
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
欧洲研究理事会;
关键词
ROOM-TEMPERATURE; GENERATION; BLOCKADE; CAVITY; LIGHT;
D O I
10.1038/srep34772
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report theoretical evidence that bulk nonlinear materials weakly interacting with highly localized plasmonic modes in ultra-sub-wavelength metallic nanostructures can lead to nonlinear effects at the single plasmon level in the visible range. In particular, the two-plasmon interaction energy in such systems is numerically estimated to be comparable with the typical plasmon linewidths. Localized surface plasmons are thus predicted to exhibit a purely nonclassical behavior, which can be clearly identified by a sub-Poissonian second-order correlation in the signal scattered from the quantized plasmonic field under coherent electromagnetic excitation. We explicitly show that systems sensitive to single-plasmon scattering can be experimentally realized by combining electromagnetic confinement in the interstitial region of gold nanodimers with local infiltration or deposition of ordinary nonlinear materials. We also propose configurations that could allow to realistically detect such an effect with state-of-the-art technology, overcoming the limitations imposed by the short plasmonic lifetime.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Plasmonics for emerging quantum technologies
    Bozhevolnyi, Sergey I.
    Mortensen, N. Asger
    NANOPHOTONICS, 2017, 6 (05) : 1185 - 1188
  • [42] Thermal phenomena in quantum plasmonics
    Sarychev, A. K.
    Tartakovsky, G.
    Vergeles, S. S.
    Parfenyev, V.
    PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES XIII, 2015, 9547
  • [43] Plasmonics with Doped Quantum Dots
    Routzahn, Aaron L.
    White, Sarah L.
    Fong, Lam-Kiu
    Jain, Prashant K.
    ISRAEL JOURNAL OF CHEMISTRY, 2012, 52 (11-12) : 983 - 991
  • [44] Overcoming quantum decoherence with plasmonics
    Bogdanov, Simeon I.
    Boltasseva, Alexandra
    Shalaev, Vladimir M.
    SCIENCE, 2019, 364 (6440) : 532 - 533
  • [45] QUANTUM PLASMONICS Diamonds in waveguides
    Maragkou, Maria
    NATURE MATERIALS, 2015, 14 (10) : 962 - 962
  • [46] Quantum plasmonics: from jellium models to ab initio calculations
    Varas, Alejandro
    Garcia-Gonzalez, Pablo
    Feist, Johannes
    Garcia-Vidal, F. J.
    Rubio, Angel
    NANOPHOTONICS, 2016, 5 (03) : 409 - 426
  • [47] Experimental determination of distance and orientation of metallic nanodimers by polarization dependent plasmon coupling
    Grecco, H. E.
    Martinez, O. E.
    PAPERS IN PHYSICS, 2010, 2
  • [48] Low-Temperature Plasmonics of Metallic Nanostructures
    Bouillard, Jean-Sebastien G.
    Dickson, Wayne
    O'Connor, Daniel P.
    Wurtz, Gregory A.
    Zayats, Anatoly V.
    NANO LETTERS, 2012, 12 (03) : 1561 - 1565
  • [49] Plasmonics: Metallic nanostructures for energy guiding and sensing
    Maier, SA
    NANOSENSING: MATERIALS AND DEVICES, 2004, 5593 : 502 - 512
  • [50] Plasmonics toward high efficiency LEDs from the visible to the deep UV region
    Okamoto, K.
    Funato, M.
    Kawakami, Y.
    Okada, N.
    Tadatomo, K.
    Tomada, K.
    LIGHT-EMITTING DIODES: MATERIALS, DEVICES, AND APPLICATIONS FOR SOLID STATE LIGHTING XXI, 2017, 10124