Plasmonics with Doped Quantum Dots

被引:54
|
作者
Routzahn, Aaron L. [1 ]
White, Sarah L. [1 ]
Fong, Lam-Kiu [1 ]
Jain, Prashant K. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
关键词
doping; localized surface plasmon resonances; nanoparticles; photonics; quantum dots; INFRARED-ABSORPTION; GOLD NANOPARTICLES; CHALCOCITE CU2S; THIN-FILMS; RESONANCE; SIZE; SCATTERING; NANOCRYSTALS; TRANSPORT; DYNAMICS;
D O I
10.1002/ijch.201200069
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We review the discovery of localized surface plasmon resonances (LSPRs) in doped semiconductor quantum dots (QDs), an advance that has extended nanoplasmonics to materials beyond the classic gamut of noble metals. The initial demonstrations of near-infrared LSPRs in QDs of heavily self-doped copper chalcogenides and conducting metal oxides are setting the broad stage for this new field. We describe the key properties of QD LSPRs. Although the essential physics of plasmon resonances are similar to that in metal nanoparticles, the attributes of QD LSPRs represent a paradigm shift from metal nanoplasmonics. Carrier doping of quantum dots allows access to tunable LSPRs in the wide frequency range from the THz to the near-infrared. Such composition or carrier density tunability is unique to semiconductor quantum dots and not achievable in metal nanoparticles. Most strikingly, semiconductor quantum dots allow plasmon resonances to be dynamically tuned or switched by active control of carriers. Semiconducting quantum dots thus represent the ideal building blocks for active plasmonics. A number of potential applications are discussed, including the use of plasmonic quantum dots as ultrasmall labels for biomedicine and electrochromic materials, the utility of LSPRs for probing nanoscale charge dynamics in semiconductors, and the exploitation of strong coupling between photons and excitons. Further advances in this field necessitate efforts toward generalizing plasmonic phenomena to a wider range of semiconductors, developing strategies for achieving controlled levels of doping and stabilizing them, investigating the spectroscopy of these systems on a fundamental level, and exploring their integration into optoelectronic devices.
引用
收藏
页码:983 / 991
页数:9
相关论文
共 50 条
  • [1] Site-controlled InAs Quantum Dots for Plasmonics
    Hakkarainen, T. V.
    Tommila, J.
    Schramm, A.
    Simonen, J.
    Niemi, T.
    Kontio, J.
    Guina, M.
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [2] Exactly doped quantum dots
    Snee, Preston T.
    Jawaid, Ali Mohammad
    Chattopadhyay, Soma
    Wink, Donald
    Page, Leah Elizabeth
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [3] Doped quantum dots.
    Hanif, KM
    Strouse, GF
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U517 - U517
  • [4] Quantum plasmonics
    Fyodorov, Ilya
    Sarychev, Andrey K.
    Tartakovsky, Gennady
    METAMATERIALS: FUNDAMENTALS AND APPLICATIONS VI, 2013, 8806
  • [5] Quantum plasmonics
    Tame M.S.
    McEnery K.R.
    Özdemir Ş.K.
    Lee J.
    Maier S.A.
    Kim M.S.
    Nature Physics, 1600, Nature Publishing Group (09): : 329 - 340
  • [6] Narrow-line self-assembled GaAs quantum dots for plasmonics
    Zhang, Hongyi
    Huo, Yongheng
    Lindfors, Klas
    Chen, Yonghai
    Schmidt, Oliver G.
    Rastelli, Armando
    Lippitz, Markus
    APPLIED PHYSICS LETTERS, 2015, 106 (10)
  • [7] Quantum plasmonics
    Jacob, Zubin
    MRS BULLETIN, 2012, 37 (08) : 761 - 767
  • [8] Quantum plasmonics
    Nordlander, Peter
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [9] Quantum plasmonics
    Tame, M. S.
    McEnery, K. R.
    Oezdemir, S. K.
    Lee, J.
    Maier, S. A.
    Kim, M. S.
    NATURE PHYSICS, 2013, 9 (06) : 329 - 340
  • [10] Quantum Plasmonics
    Fitzgerald, Jamie M.
    Narang, Prineha
    Craster, Richard V.
    Maier, Stefan A.
    Giannini, Vincenzo
    PROCEEDINGS OF THE IEEE, 2016, 104 (12) : 2307 - 2322