A REACTION-DIFFUSION MODEL OF THE HUMAN BRAIN DEVELOPMENT

被引:2
|
作者
Lefevre, Julien [1 ,2 ]
Mangin, Jean-Francois [2 ]
机构
[1] Univ Aix Marseille 2, UMR CNRS 6168, Lab LSIS, F-13284 Marseille 07, France
[2] CEA, Neurospin, LNAO, I2BM, Grenoble, France
关键词
Reaction-Diffusion Equations; Folding; Brain Development; MORPHOGENESIS; PATTERNS; CORTEX; SYSTEM;
D O I
10.1109/ISBI.2010.5490411
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The anatomical variability of the human brain folds remains an unclear and challenging issue. Several hypotheses coexist for explaining the rapid development of cortical sulci and it is clear that understanding their variability would improve the comparison of anatomical and functional data across cohorts of subjects. In this article we propose to extend a model of cortical folding based on reaction-diffusion mechanisms. The originality of our approach lies in the fact that the surface on which these mechanisms take place is deformed iteratively and engenders geometric patterns that can be linked to cortical sulci. We show that some statistic properties of our model can reflect the variability of sulcal structures.
引用
收藏
页码:77 / 80
页数:4
相关论文
共 50 条
  • [31] Source Localization of Reaction-Diffusion Models for Brain Tumors
    Jaroudi, Rym
    Baravdish, George
    Astroem, Freddie
    Johansson, B. Tomas
    PATTERN RECOGNITION, GCPR 2016, 2016, 9796 : 414 - 425
  • [32] Hyperbolic Reaction-Diffusion Model for Virus Infections
    Mendez, Vicenc
    Casas-Vazquez, Jose
    INTERNATIONAL JOURNAL OF THERMODYNAMICS, 2008, 11 (01) : 35 - 38
  • [33] TRANSIENT SPATIOTEMPORAL CHAOS IN A REACTION-DIFFUSION MODEL
    WACKER, A
    BOSE, S
    SCHOLL, E
    EUROPHYSICS LETTERS, 1995, 31 (5-6): : 257 - 262
  • [34] Parametric Pattern Selection in a Reaction-Diffusion Model
    Stich, Michael
    Ghoshal, Gourab
    Perez-Mercader, Juan
    PLOS ONE, 2013, 8 (10):
  • [35] Travelling waves in a reaction-diffusion model for electrodeposition
    Bozzini, Benedetto
    Lacitignola, Deborah
    Sgura, Ivonne
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (05) : 1027 - 1044
  • [36] Global dynamics of a reaction-diffusion malaria model
    Xin, Ming-Zhen
    Wang, Bin-Guo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61
  • [37] EFFECT OF ANTI-INFLAMMATORY PROCESSES ON THE DEVELOPMENT OF INFLAMMATION IN A REACTION-DIFFUSION MODEL
    EL Hajj, Wissam
    EL Khatib, Nader
    Volpert, Vitaly
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [38] A hyperbolic reaction-diffusion model for the hantavirus infection
    Barbera, E.
    Curro, C.
    Valenti, G.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (04) : 481 - 499
  • [39] Bifurcation analysis of reaction-diffusion Schnakenberg model
    Liu, Ping
    Shi, Junping
    Wang, Yuwen
    Feng, Xiuhong
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (08) : 2001 - 2019
  • [40] Solvability of reaction-diffusion model with variable exponents
    Shangerganesh, Lingeshwaran
    Balachandran, Krishnan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (10) : 1436 - 1448