A REACTION-DIFFUSION MODEL OF THE HUMAN BRAIN DEVELOPMENT

被引:2
|
作者
Lefevre, Julien [1 ,2 ]
Mangin, Jean-Francois [2 ]
机构
[1] Univ Aix Marseille 2, UMR CNRS 6168, Lab LSIS, F-13284 Marseille 07, France
[2] CEA, Neurospin, LNAO, I2BM, Grenoble, France
关键词
Reaction-Diffusion Equations; Folding; Brain Development; MORPHOGENESIS; PATTERNS; CORTEX; SYSTEM;
D O I
10.1109/ISBI.2010.5490411
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The anatomical variability of the human brain folds remains an unclear and challenging issue. Several hypotheses coexist for explaining the rapid development of cortical sulci and it is clear that understanding their variability would improve the comparison of anatomical and functional data across cohorts of subjects. In this article we propose to extend a model of cortical folding based on reaction-diffusion mechanisms. The originality of our approach lies in the fact that the surface on which these mechanisms take place is deformed iteratively and engenders geometric patterns that can be linked to cortical sulci. We show that some statistic properties of our model can reflect the variability of sulcal structures.
引用
收藏
页码:77 / 80
页数:4
相关论文
共 50 条
  • [21] CLT for NESS of a reaction-diffusion model
    Goncalves, P.
    Jara, M.
    Marinho, R.
    Menezes, O.
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 190 (1-2) : 337 - 377
  • [22] Radial evolution in a reaction-diffusion model
    Silveira, Sofia M.
    Alves, Sidiney G.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (02):
  • [23] A reaction-diffusion model for phenotypic evolution
    de Assis, Raul Abreu
    Ferreira, Wilson Castro, Jr.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (01): : 235 - 254
  • [24] A Reaction-Diffusion Model for the Production of Autowaves
    Medina Hernandez, Jose Antonio
    Gomez Castaneda, Felipe
    Moreno Cadenas, Jose Antonio
    2008 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2008), 2008, : 275 - 280
  • [25] A REACTION-DIFFUSION MODEL OF DENGUE TRANSMISSION
    Xu, Zhiting
    Zhao, Yingying
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (09): : 2993 - 3018
  • [26] Reaction-diffusion pulses: a combustion model
    Campos, D
    Llebot, JE
    Fort, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (26): : 6609 - 6621
  • [27] Diffusion of water and oxygen in quartz: reaction-diffusion model
    Doremus, RH
    EARTH AND PLANETARY SCIENCE LETTERS, 1998, 163 (1-4) : 43 - 51
  • [28] The success of fast reaction:: A discrete reaction-diffusion model
    Büger, M
    QUARTERLY OF APPLIED MATHEMATICS, 2004, 62 (04) : 623 - 641
  • [29] ALGORITHMIC NATURE OF A REACTION-DIFFUSION DEVELOPMENT PROCESS
    MARTINEZ, HM
    BAER, RM
    BULLETIN OF MATHEMATICAL BIOLOGY, 1973, 35 (1-2) : 87 - 94
  • [30] ON A REACTION-DIFFUSION SYSTEM ASSOCIATED WITH BRAIN LACTATE KINETICS
    Guillevin, Remy
    Miranville, Alain
    Perrillat-Mercerot, Angelique
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,