STEIN'S METHOD AND THE RANK DISTRIBUTION OF RANDOM MATRICES OVER FINITE FIELDS

被引:23
|
作者
Fulman, Jason [1 ]
Goldstein, Larry [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
来源
ANNALS OF PROBABILITY | 2015年 / 43卷 / 03期
关键词
Stein's method; random matrix; finite field; rank;
D O I
10.1214/13-AOP889
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
With Q(q,n) the distribution of n minus the rank of a matrix chosen uniformly from the collection of all n x (n + m) matrices over the finite field F-q of size q >= 2, and Q(q) the distributional limit of Q(q,n) as n -> infinity, we apply Stein's method to prove the total variation bound 1/8q(n+m+1) <= parallel to Q(q,n) - Qq parallel to TV <= 3/q(n+m+1). In addition, we obtain similar sharp results for the rank distributions of symmetric, symmetric with zero diagonal, skew symmetric, skew centrosymmetric and Hermitian matrices.
引用
收藏
页码:1274 / 1314
页数:41
相关论文
共 50 条
  • [31] Integer Sequences and Matrices Over Finite Fields
    Morrison, Kent E.
    JOURNAL OF INTEGER SEQUENCES, 2006, 9 (02)
  • [32] Computing in unitriangular matrices over finite fields
    Vera-López, A
    Arregi, JM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 : 193 - 219
  • [33] Unimodular polynomial matrices over finite fields
    Arora, Akansha
    Ram, Samrith
    Venkateswarlu, Ayineedi
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (04) : 1299 - 1312
  • [34] Central polynomials for matrices over finite fields
    Bresar, Matej
    Drensky, Vesselin
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (07): : 939 - 944
  • [35] Unimodular polynomial matrices over finite fields
    Akansha Arora
    Samrith Ram
    Ayineedi Venkateswarlu
    Journal of Algebraic Combinatorics, 2021, 53 : 1299 - 1312
  • [36] Generators of ideals of matrices over finite fields
    Chapman, R
    AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (07): : 638 - 639
  • [37] Matrices over finite fields and their Kirchhoff graphs
    Reese, Tyler M.
    Fehribach, Joseph D.
    Paffenroth, Randy C.
    Servatius, Brigitte
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 547 : 128 - 147
  • [38] Polynomial equations for matrices over finite fields
    Hua, JZ
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (01) : 59 - 64
  • [39] Waring problem for matrices over finite fields
    Kishore, Krishna
    Vasiu, Adrian
    Zhan, Sailun
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (07)
  • [40] On the ranks of Toeplitz matrices over finite fields
    Price, GL
    Truitt, GH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 294 (1-3) : 49 - 66