Waring problem for matrices over finite fields

被引:1
|
作者
Kishore, Krishna [1 ]
Vasiu, Adrian [2 ]
Zhan, Sailun [2 ]
机构
[1] Indian Inst Technol IIT Tirupati, Dept Math, Tirupati Renigunta Rd,Settipalli Post, Tirupati 517506, Andhra Prades, India
[2] SUNY Binghamton, Dept Math & Stat, POB 6000, Binghamton, NY 13902 USA
关键词
Waring problem; Matrices over finite fields; SUMS; RINGS;
D O I
10.1016/j.jpaa.2024.107656
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for all integers k >= 1, q >= ( k - 1) 4 + 6 k, and m >= 1, every matrix in M m ( F q ) is a sum of two kth powers: M m ( F q ) = {A k + B k |A, B is an element of M m ( F q ) }. We further generalize and refine this result in the cases when both B and C can be chosen to be invertible, cyclic, or split semisimple, when k is coprime to p, or when m is sufficiently large. We also give a criterion for the Waring problem in terms of stabilizers. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条