共 50 条
Reduced-Bias Location-Invariant Extreme Value Index Estimation: A Simulation Study
被引:10
|作者:
Gomes, M. Ivette
[1
,2
]
Henriques-Rodrigues, Ligia
[2
,3
]
Miranda, M. Cristina
[2
,4
]
机构:
[1] Univ Lisbon, FCUL, DEIO, P-1749016 Lisbon, Portugal
[2] CEAUL, P-1749016 Lisbon, Portugal
[3] Inst Politecn Tomar, Lisbon, Portugal
[4] Univ Aveiro, ISCA, Lisbon, Portugal
关键词:
Adaptive choice;
Bias reduction;
Extreme value index;
Heuristics;
Semi-parametric location;
scale invariant estimation;
Statistics of extremes;
TAIL INDEX;
D O I:
10.1080/03610918.2010.543297
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this article, we deal with semi-parametric corrected-bias estimation of a positive extreme value index (EVI), the primary parameter in statistics of extremes. Under such a context, the classical EVI-estimators are the Hill estimators, based on any intermediate number k of top-order statistics. But these EVI-estimators are not location-invariant, contrarily to the PORT-Hill estimators, which depend on an extra tuning parameter q, with 0q1, and where PORT stands for peaks over random threshold. On the basis of second-order minimum-variance reduced-bias (MVRB) EVI-estimators, we shall here consider PORT-MVRB EVI-estimators. Due to the stability on k of the MVRB EVI-estimates, we propose the use of a heuristic algorithm, for the adaptive choice of k and q, based on the bias pattern of the estimators as a function of k. Applications in the fields of insurance and finance will be provided.
引用
收藏
页码:424 / 447
页数:24
相关论文