Invariant solutions and conservation laws of the generalized Kaup-Boussinesq equation

被引:4
|
作者
Chen, Cheng [1 ]
Jiang, Yao-Lin [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
关键词
BACKLUND TRANSFORMATION; SYMMETRY ANALYSIS; SYSTEM;
D O I
10.1080/17455030.2017.1418098
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalized Kaup-Boussinesq equation is a model which is used to describe the water wave. In this paper, Lie group analysis method is used to perform detailed analysis on the generalized Kaup-Boussinesq equation. Some invariant solutions are obtained under the transformation groups. The conservation laws of the generalized Kaup-Boussinesq equation are constructed using two methods: multiplier method and Ibragimov theorem.
引用
收藏
页码:138 / 152
页数:15
相关论文
共 50 条
  • [41] Invariant Solutions and Conservation Laws of the Time-Fractional Telegraph Equation
    Najafi, Ramin
    Celik, Ercan
    Uyanik, Neslihan
    ADVANCES IN MATHEMATICAL PHYSICS, 2023, 2023
  • [42] SYMMETRIES, INVARIANT SOLUTIONS AND CONSERVATION-LAWS OF THE NONLINEAR ACOUSTICS EQUATION
    SHAROMET, NO
    ACTA APPLICANDAE MATHEMATICAE, 1989, 15 (1-2) : 83 - 120
  • [43] Optimal system, group invariant solutions and conservation laws of the CGKP equation
    Lihua Zhang
    Fengsheng Xu
    Lixin Ma
    Nonlinear Dynamics, 2017, 88 : 2503 - 2511
  • [44] GROUP-INVARIANT SOLUTIONS, NON-GROUP-INVARIANT SOLUTIONS AND CONSERVATION LAWS OF QIAO EQUATION
    Shi, Jianping
    Zhou, Mengmeng
    Fang, Hui
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (05): : 2023 - 2036
  • [45] On the Integration of the Hierarchy of the Kaup-Boussinesq System with a Self-Consistent Source
    Babajanov, B. A.
    Abdikarimov, F. B.
    Sulaymonov, F. U.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (07) : 3233 - 3245
  • [46] The investigation of soliton solutions and conservation laws to the coupled generalized Schrodinger-Boussinesq system
    Baleanu, Dumitru
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (01) : 77 - 92
  • [47] Nonlocal symmetries, conservation laws and interaction solutions for the classical Boussinesq-Burgers equation
    Dong, Min-Jie
    Tian, Shou-Fu
    Yan, Xue-Wei
    Zhang, Tian-Tian
    NONLINEAR DYNAMICS, 2019, 95 (01) : 273 - 291
  • [48] Exact solutions of a generalized Boussinesq equation
    Bruzon, M. S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 160 (01) : 894 - 904
  • [49] Analytical solutions of the generalized Kaup–Newell equation
    Kutukov A.A.
    Kudryashov N.A.
    Optik, 2023, 293
  • [50] Exact solutions of a generalized Boussinesq equation
    M. S. Bruzón
    Theoretical and Mathematical Physics, 2009, 160 : 894 - 904