Invariant solutions and conservation laws of the generalized Kaup-Boussinesq equation

被引:4
|
作者
Chen, Cheng [1 ]
Jiang, Yao-Lin [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
关键词
BACKLUND TRANSFORMATION; SYMMETRY ANALYSIS; SYSTEM;
D O I
10.1080/17455030.2017.1418098
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalized Kaup-Boussinesq equation is a model which is used to describe the water wave. In this paper, Lie group analysis method is used to perform detailed analysis on the generalized Kaup-Boussinesq equation. Some invariant solutions are obtained under the transformation groups. The conservation laws of the generalized Kaup-Boussinesq equation are constructed using two methods: multiplier method and Ibragimov theorem.
引用
收藏
页码:138 / 152
页数:15
相关论文
共 50 条
  • [31] Backlund transformation, infinite conservation laws and periodic wave solutions to a generalized (2+1)-dimensional Boussinesq equation
    Xu, Mei-Juan
    Tian, Shou-Fu
    Tu, Jian-Min
    Zhang, Tian-Tian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 31 : 388 - 408
  • [32] Symmetry solutions and conservation laws of a (3+1)-dimensional generalized KP-Boussinesq equation in fluid mechanics
    Moleleki, Letlhogonolo Daddy
    Simbanefayi, Innocent
    Khalique, Chaudry Masood
    CHINESE JOURNAL OF PHYSICS, 2020, 68 : 940 - 949
  • [33] Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer–Kaup system
    Mohamed Rahioui
    El Hassan El Kinani
    Abdelaziz Ouhadan
    Computational and Applied Mathematics, 2024, 43
  • [34] Infinite conservation laws and new solutions of (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Zhang, Shi-Jie
    Bao, Taogetusang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (16):
  • [35] Lie symmetries, invariant subspace method, and conservation laws for a time fractional generalized Broer–Kaup system
    Rahioui, Mohamed
    El Kinani, El Hassan
    Ouhadan, Abdelaziz
    Computational and Applied Mathematics, 2024, 43 (01)
  • [36] Group Invariant Solutions and Conservation Laws of the Fornberg-Whitham Equation
    Hashemi, Mir Sajjad
    Haji-Badali, Ali
    Vafadar, Parisa
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2014, 69 (8-9): : 489 - 496
  • [37] Optimal system, group invariant solutions and conservation laws of the CGKP equation
    Zhang, Lihua
    Xu, Fengsheng
    Ma, Lixin
    NONLINEAR DYNAMICS, 2017, 88 (04) : 2503 - 2511
  • [38] Travelling Wave Group-Invariant Solutions and Conservation Laws for θ-Equation
    Johnpillai, A. G.
    Khalique, C. M.
    Mahomed, F. M.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 13 - 29
  • [39] On symmetries, conservation laws and invariant solutions of the foam-drainage equation
    Yasar, Emrullah
    Ozer, Teoman
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2011, 46 (02) : 357 - 362
  • [40] Self-adjointness, conservation laws and invariant solutions of the Buckmaster equation
    Rashidi, Saeede
    Hejazi, Seyed Reza
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (01): : 85 - 98