Comparison inequalities for heat semigroups and heat kernels on metric measure spaces

被引:27
|
作者
Grigor'yan, Alexander [2 ]
Hu, Jiaxin [1 ]
Lau, Ka-Sing [3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
Dirichlet form; Heat semigroup; Heat kernel; Maximum principle; BROWNIAN-MOTION;
D O I
10.1016/j.jfa.2010.07.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a certain inequality for a subsolution of the heat equation associated with a regular Dirichlet form. As a consequence of this inequality, we obtain various interesting comparison inequalities for heat semigroups and heat kernels, which can be used for obtaining pointwise estimates of heat kernels. As an example of application, we present a new method of deducing sub-Gaussian upper bounds of the heat kernel from on-diagonal bounds and tail estimates. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2613 / 2641
页数:29
相关论文
共 50 条
  • [41] Ends of metric measure spaces and Sobolev inequalities
    Stephen M Buckley
    Pekka Koskela
    Mathematische Zeitschrift, 2006, 252 : 275 - 285
  • [42] Jump processes and nonlinear fractional heat equations on metric measure spaces
    Hu, JX
    Zähle, M
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (1-2) : 150 - 163
  • [43] Analysis on Fractal Spaces and Heat Kernels
    Grigor'yan, Alexander
    DIRICHLET FORMS AND RELATED TOPICS: IN HONOR OF MASATOSHI FUKUSHIMA'S BEIJU (IWDFRT 2022), 2022, 394 : 143 - 159
  • [44] Oscillating heat kernels on ultrametric spaces
    Bendikov, Alexander
    Cygan, Wojciech
    Woess, Wolfgang
    JOURNAL OF SPECTRAL THEORY, 2019, 9 (01) : 195 - 226
  • [45] Reduced heat kernels on homogeneous spaces
    ter Elst, AFM
    Smulders, CMPA
    JOURNAL OF OPERATOR THEORY, 1999, 42 (02) : 269 - 304
  • [46] Heat kernels on metric graphs and a trace formula
    Kostrykin, Vadim
    Potthoff, Juergen
    Schrader, Robert
    ADVENTURES IN MATHEMATICAL PHYSICS, 2007, 447 : 175 - +
  • [47] FIRST ORDER POINCARE INEQUALITIES IN METRIC MEASURE SPACES
    Durand-Cartagena, Estibalitz
    Jaramillo, Jesus A.
    Shanmugalingam, Nageswari
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (01) : 287 - 308
  • [48] Stability of parabolic Harnack inequalities on metric measure spaces
    Barlow, Martin T.
    Bass, Richard F.
    Kumagai, Takashi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (02) : 485 - 519
  • [49] On fractional inequalities on metric measure spaces with polar decomposition
    Kassymov, Aidyn
    Ruzhansky, Michael
    Zaur, Gulnur
    FORUM MATHEMATICUM, 2024,
  • [50] Hardy and Rellich type inequalities on metric measure spaces
    Du, Feng
    Mao, Jing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (01) : 354 - 365