Comparison inequalities for heat semigroups and heat kernels on metric measure spaces

被引:27
|
作者
Grigor'yan, Alexander [2 ]
Hu, Jiaxin [1 ]
Lau, Ka-Sing [3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
Dirichlet form; Heat semigroup; Heat kernel; Maximum principle; BROWNIAN-MOTION;
D O I
10.1016/j.jfa.2010.07.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a certain inequality for a subsolution of the heat equation associated with a regular Dirichlet form. As a consequence of this inequality, we obtain various interesting comparison inequalities for heat semigroups and heat kernels, which can be used for obtaining pointwise estimates of heat kernels. As an example of application, we present a new method of deducing sub-Gaussian upper bounds of the heat kernel from on-diagonal bounds and tail estimates. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2613 / 2641
页数:29
相关论文
共 50 条
  • [21] Coercive inequalities on metric measure spaces
    Hebisch, W.
    Zegarlinski, B.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (03) : 814 - 851
  • [22] Hardy inequalities on metric measure spaces
    Ruzhansky, Michael
    Verma, Daulti
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2223):
  • [23] Characterizations of Sets of Finite Perimeter Using Heat Kernels in Metric Spaces
    Marola, Niko
    Miranda, Michele, Jr.
    Shanmugalingam, Nageswari
    POTENTIAL ANALYSIS, 2016, 45 (04) : 609 - 633
  • [24] Characterizations of Sets of Finite Perimeter Using Heat Kernels in Metric Spaces
    Niko Marola
    Michele Miranda
    Nageswari Shanmugalingam
    Potential Analysis, 2016, 45 : 609 - 633
  • [25] Sharp heat kernel bounds and entropy in metric measure spaces
    Huaiqian Li
    ScienceChina(Mathematics), 2018, 61 (03) : 487 - 510
  • [26] On the heat flow on metric measure spaces: existence, uniqueness and stability
    Nicola Gigli
    Calculus of Variations and Partial Differential Equations, 2010, 39 : 101 - 120
  • [27] Sharp heat kernel bounds and entropy in metric measure spaces
    Li, Huaiqian
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (03) : 487 - 510
  • [28] Heat kernel on smooth metric measure spaces with nonnegative curvature
    Wu, Jia-Yong
    Wu, Peng
    MATHEMATISCHE ANNALEN, 2015, 362 (3-4) : 717 - 742
  • [29] Heat Kernel Bounds on Metric Measure Spaces and Some Applications
    Jiang, Renjin
    Li, Huaiqian
    Zhang, Huichun
    POTENTIAL ANALYSIS, 2016, 44 (03) : 601 - 627
  • [30] Heat kernel on smooth metric measure spaces with nonnegative curvature
    Jia-Yong Wu
    Peng Wu
    Mathematische Annalen, 2015, 362 : 717 - 742