Dynamic system for solving complex eigenvalue problems

被引:1
|
作者
Zhang, Q [1 ]
Leung, YW
机构
[1] Changsha Inst Technol, Dept Comp, Changsha, Peoples R China
[2] Hong Kong Baptist Univ, Dept Comp Studies, Kowloon Tong, Hong Kong
来源
关键词
eigenvalue problems; analogue neural computing;
D O I
10.1049/ip-cta:19971123
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the paper, the authors propose a dynamic system for solving complex eigenvalue problems. We show that, under some mild conditions, the set of the unit eigenvectors corresponding to the eigenvalue with the largest real part is asymptotically stable and the sets of the unit eigenvectors corresponding to the other eigenvalues is unstable. The proposed dynamical system can be realised as analogue neural networks for real-time applications.
引用
收藏
页码:455 / 458
页数:4
相关论文
共 50 条
  • [41] An Approach to Solving Inverse Eigenvalue Problems for Matrices
    V. N. Kublanovskaya
    Journal of Mathematical Sciences, 2003, 114 (6) : 1808 - 1819
  • [42] On solving complex layout problems with system engineering method
    Liu, J.
    Yang, G.
    Teng, H.
    Jixie Kexue Yu Jishu/Mechanical Science and Technology, 2001, 20 (06): : 10 - 11
  • [43] SOLVING PERIODIC EIGENPROBLEMS BY SOLVING CORRESPONDING EXCITATION PROBLEMS IN THE DOMAIN OF THE EIGENVALUE
    Eibert, T. F.
    Weitsch, Y.
    Chen, H.
    Gruber, M. E.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2012, 126 : 65 - 84
  • [44] Solving Complex Problems
    Hodges, K. V.
    SCIENCE, 2012, 338 (6111) : 1164 - 1165
  • [45] EIGENVALUE ESTIMATION FOR DYNAMIC CONTACT PROBLEMS
    PLESHA, ME
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1987, 113 (03): : 457 - 462
  • [46] Dynamic equations of generalized eigenvalue problems
    Jiang, YL
    Chen, RMM
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (08) : 1974 - 1978
  • [47] INVERSE EIGENVALUE PROBLEMS FOR COMPLEX MATRICES
    DEOLIVEIRA, GN
    COMPUTING, 1970, 6 (3-4) : 339 - +
  • [48] SOLVING NONLINEAR EIGENVALUE PROBLEMS BY ALGORITHMIC DIFFERENTIATION.
    Arbenz, P.
    Gander, W.
    Computing (Vienna/New York), 1986, 36 (03): : 205 - 215
  • [49] A NOVEL DEFLATION TECHNIQUE FOR SOLVING QUADRATIC EIGENVALUE PROBLEMS
    Huang, Tsung-Ming
    Lin, Wen-Wei
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (01): : 57 - 84
  • [50] Boundary approximation methods for solving eigenvalue problems with interfaces
    Li, ZC
    Lu, TT
    Guan, DJ
    Yang, CB
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 455 - 456