Dynamic system for solving complex eigenvalue problems

被引:1
|
作者
Zhang, Q [1 ]
Leung, YW
机构
[1] Changsha Inst Technol, Dept Comp, Changsha, Peoples R China
[2] Hong Kong Baptist Univ, Dept Comp Studies, Kowloon Tong, Hong Kong
来源
关键词
eigenvalue problems; analogue neural computing;
D O I
10.1049/ip-cta:19971123
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the paper, the authors propose a dynamic system for solving complex eigenvalue problems. We show that, under some mild conditions, the set of the unit eigenvectors corresponding to the eigenvalue with the largest real part is asymptotically stable and the sets of the unit eigenvectors corresponding to the other eigenvalues is unstable. The proposed dynamical system can be realised as analogue neural networks for real-time applications.
引用
收藏
页码:455 / 458
页数:4
相关论文
共 50 条
  • [21] SOLVING RATIONAL EIGENVALUE PROBLEMS VIA LINEARIZATION
    Su, Yangfeng
    Bai, Zhaojun
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (01) : 201 - 216
  • [22] Solving Maxwell eigenvalue problems for accelerating cavities
    Arbenz, P
    Geus, R
    Adam, S
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2001, 4 (02): : 24 - 33
  • [23] COMPUTING SPECTRA WITHOUT SOLVING EIGENVALUE PROBLEMS
    Arnold, Douglas N.
    David, Guy
    Filoche, Marcel
    Jerison, David
    Mayboroda, Svitlana
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01): : B69 - B92
  • [24] A method for solving stochastic eigenvalue problems II
    Williams, M. M. R.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4729 - 4744
  • [25] SOLVING NONLINEAR EIGENVALUE PROBLEMS BY ALGORITHMIC DIFFERENTIATION
    ARBENZ, P
    GANDER, W
    COMPUTING, 1986, 36 (03) : 205 - 215
  • [26] Optimal quotients for solving large eigenvalue problems
    Marko Huhtanen
    Vesa Kotila
    BIT Numerical Mathematics, 2019, 59 : 125 - 154
  • [27] Numerical methods for solving multiparameter eigenvalue problems
    Dai, H
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 72 (03) : 331 - 347
  • [28] A SHIFTED METHOD FOR SOLVING SYMMETRICAL EIGENVALUE PROBLEMS
    ZHANG, ZY
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 25 (04) : 75 - 86
  • [29] To solving inverse eigenvalue problems for parametric matrices
    Kublanovskaya V.N.
    Khazanov V.B.
    Journal of Mathematical Sciences, 2007, 141 (6) : 1668 - 1677
  • [30] ITERATION METHOD FOR SOLVING NONLINEAR EIGENVALUE PROBLEMS
    DEMOULIN, YMJ
    CHEN, YM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 28 (03) : 588 - 595