Perfect powers in linear recurring sequences

被引:8
|
作者
Fuchs, C [1 ]
Tichy, RF [1 ]
机构
[1] Graz Tech Univ, Inst Math, A-8010 Graz, Austria
关键词
D O I
10.4064/aa107-1-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:9 / 25
页数:17
相关论文
共 50 条
  • [31] Perfect powers from products of terms in Lucas sequences
    Bugeaud, Yann
    Luca, Florian
    Mignotte, Maurice
    Siksek, Samir
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 611 : 109 - 129
  • [32] Joint linear complexity of multisequences consisting of linear recurring sequences
    Fang-Wei Fu
    Harald Niederreiter
    Ferruh Özbudak
    Cryptography and Communications, 2009, 1 : 3 - 29
  • [33] Joint linear complexity of multisequences consisting of linear recurring sequences
    Fu, Fang-Wei
    Niederreiter, Harald
    Ozbudak, Ferruh
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2009, 1 (01): : 3 - 29
  • [34] Detecting perfect powers in essentially linear time
    Bernstein, DJ
    MATHEMATICS OF COMPUTATION, 1998, 67 (223) : 1253 - 1283
  • [35] On prime powers in linear recurrence sequences
    Japhet Odjoumani
    Volker Ziegler
    Annales mathématiques du Québec, 2023, 47 : 349 - 366
  • [36] On prime powers in linear recurrence sequences
    Odjoumani, Japhet
    Ziegler, Volker
    ANNALES MATHEMATIQUES DU QUEBEC, 2023, 47 (02): : 349 - 366
  • [37] Linear recursive sequences and powers of matrices
    Sun, ZH
    FIBONACCI QUARTERLY, 2001, 39 (04): : 339 - 351
  • [38] Linear recurring sequences and subfield subcodes of cyclic codes
    Gao ZhiHan
    Fu FangWei
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (07) : 1413 - 1420
  • [39] A note on the minimal polynomial of the product of linear recurring sequences
    Çakçak, E
    FINITE FIELDS AND APPLICATIONS, 2001, : 57 - 69
  • [40] LINEAR RECURRING SEQUENCES FOR COMPUTING THE RESULTANT OF MULTIVARIATE POLYNOMIALS
    LLOVET, J
    MARTINEZ, R
    JAEN, JA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 49 (1-3) : 145 - 152