This paper (1) gives complete details of an algorithm to compute approximate kth roots; (2) uses this in an algorithm that, given an integer n > 1, either writes n as a perfect power or proves that n is not a perfect power; (3) proves, using Loxton's theorem on multiple linear forms in logarithms, that this perfect-power decomposition algorithm runs in time (log n)(1+o(1)).
机构:
Univ Strasbourg, UMR 7501, Inst Rech Math Avancee, 7 Rue Rene Descartes, F-67084 Strasbourg, France
CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, FranceUniv Strasbourg, UMR 7501, Inst Rech Math Avancee, 7 Rue Rene Descartes, F-67084 Strasbourg, France
Bugeaud, Yann
Kaneko, Hajime
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tsukuba, Inst Math & Res Core Math Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058571, JapanUniv Strasbourg, UMR 7501, Inst Rech Math Avancee, 7 Rue Rene Descartes, F-67084 Strasbourg, France