Detecting perfect powers in essentially linear time

被引:26
|
作者
Bernstein, DJ [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.1090/S0025-5718-98-00952-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper (1) gives complete details of an algorithm to compute approximate kth roots; (2) uses this in an algorithm that, given an integer n > 1, either writes n as a perfect power or proves that n is not a perfect power; (3) proves, using Loxton's theorem on multiple linear forms in logarithms, that this perfect-power decomposition algorithm runs in time (log n)(1+o(1)).
引用
收藏
页码:1253 / 1283
页数:31
相关论文
共 50 条
  • [31] Almost perfect powers in consecutive integers
    Hanrot, G
    Saradha, N
    Shorey, TN
    ACTA ARITHMETICA, 2001, 99 (01) : 13 - 25
  • [32] Generalized Sidon sets of perfect powers
    Kiss, Sandor Z.
    Sandor, Csaba
    RAMANUJAN JOURNAL, 2022, 59 (02): : 351 - 363
  • [33] Perfect powers in Smarandache type expressions
    Luca, F
    FIRST INTERNATIONAL CONFERENCE ON SMARANDACHE TYPE NOTIONS IN NUMBER THEORY, PROCEEDINGS, 1997, : 61 - 78
  • [34] Perfect powers in elliptic divisibility sequences
    Reynolds, Jonathan
    JOURNAL OF NUMBER THEORY, 2012, 132 (05) : 998 - 1015
  • [35] Generalized Sidon sets of perfect powers
    Sándor Z. Kiss
    Csaba Sándor
    The Ramanujan Journal, 2022, 59 : 351 - 363
  • [36] Perfect powers among Fibonomial coefficients
    Marques, Diego
    Togbe, Alain
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (13-14) : 717 - 720
  • [37] Almost perfect powers in arithmetic progression
    Saradha, N
    Shorey, TN
    ACTA ARITHMETICA, 2001, 99 (04) : 363 - 388
  • [38] On the difference between two perfect powers
    Bugeaud, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (12): : 1119 - 1121
  • [39] Structure and linear time recognition of 3-leaf powers
    Brandstädt, A
    Le, VB
    INFORMATION PROCESSING LETTERS, 2006, 98 (04) : 133 - 138
  • [40] On essentially semi regular linear relations
    Alvarez, Teresa
    Keskes, Sonia
    Mnif, Maher
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 530 : 518 - 540