The metal-poor end of the lithium plateau

被引:0
|
作者
Sbordone, L. [1 ]
Bonifacio, P. [1 ]
Hernandez, J. I. Gonzalez [1 ]
Cayrel, R. [2 ]
Behara, N. [1 ]
Molaro, R. [3 ]
Plez, B. [4 ]
Francois, R. [5 ]
Christlieb, N. [6 ]
Ludwig, H. -G. [1 ]
Sivarani, T. [7 ]
Beers, T. C. [7 ]
Van't Veer, C.
机构
[1] Observ Paris, CIFIST & GEPI, 5 Pl Jules Janssen, F-92190 Meudon, France
[2] GEPI Observ Paris, Paris, France
[3] INAF Osservat Astron TRieste, Trieste, Italy
[4] Univ Montpellier 2, GRAAL, F-34095 Montpellier 5, France
[5] ESO, Chile, Germany
[6] Uppsala Univ, Dept Astron & Space Phys, S-75105 Uppsala, Sweden
[7] Michigan State Univ, CSCE, Dept Phys & Astron, E Lansing, MI 48824 USA
来源
FIRST STARS III | 2008年 / 990卷
关键词
stellar atmospheres; opacity and line formation; Galactic halo; origin; formation; and abundances of the elements; big bang nucleosynthesis;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present our current sample of Lithium abundances in 28 low metallicity dwarf and Turn Off (TO) stars ([Fe/H] between -2.5 and -3.5), based on high resolution, high signal to noise echelle spectra. Nine new stars have been added to the Bonifacio et al. [1] sample, and the full sample has been reanalyzed in order to take into account the effect of two different possible temperature scales. In fact, the Li abundance measurement based on the 670.8 nm line is highly sensitive to temperature, and T-eff scales are still poorly calibrated at low metallicities. First, the effective temperature has been derived from H alpha profile fitting, and second, directly from the star's infrared flux. The two methods offer similar precision but are affected by different uncertainties and systematics. The infrared flux method (IRFM) leads to a larger T-eff dispersion than the H alpha profile fitting, while also producing an offset of about 150 K towards hotter temperatures. This leads to a contraction of the metallicity scale of the sample, which encompasses [Fe/H]=-3.7 to -2.5 when using Ha calibrated temperatures, and [Fe/H]=-3.4 to -2.5 when using IRFM. The higher average IRFM temperature increases somewhat the mean Li abundance, changing from A(Li)(H alpha)=2.10 to A(Li)(IRFM)=2.18.
引用
收藏
页码:339 / +
页数:2
相关论文
共 50 条
  • [31] LITHIUM ABUNDANCE IN A FEW EXTREMELY METAL-POOR STARS AND STRONTIUM-POOR STARS
    SPITE, F
    SPITE, M
    ASTRONOMY & ASTROPHYSICS, 1993, 279 (01) : L9 - L12
  • [32] Atomic diffusion in metal-poor stars - II. Predictions for the Spite plateau
    Salaris, M
    Weiss, A
    ASTRONOMY & ASTROPHYSICS, 2001, 376 (03): : 955 - 965
  • [33] Lithium isotopic abundances in metal-poor stars: Observations with Subaru/HDS
    Garcia, Perez A. E.
    Aoki, W.
    Ryan, S. G.
    Inoue, S.
    FIRST STARS III, 2008, 990 : 169 - +
  • [34] Membership and lithium in the old, metal-poor open cluster Berkeley 32
    Randich, S.
    Pace, G.
    Pastori, L.
    Bragaglia, A.
    ASTRONOMY & ASTROPHYSICS, 2009, 496 (02): : 441 - 451
  • [35] Lithium abundances in extremely metal-poor turn-off stars
    Aoki, W.
    Barklem, R.
    Beers, T. C.
    Christlieb, N.
    Inoue, S.
    ORIGIN OF MATTER AND EVOLUTION OF GALAXIES, 2008, 1016 : 37 - +
  • [36] Lithium abundances in metal-poor stars: I.: New observations
    Gutiérrez, CM
    López, RJG
    Rebolo, R
    Martín, EL
    François, P
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1999, 137 (01): : 93 - 99
  • [37] Testing Metal-poor Stellar Models and Isochrones with HST Parallaxes of Metal-poor Stars
    Chaboyer, B.
    McArthur, B. E.
    O'Malley, E.
    Benedict, G. F.
    Feiden, G. A.
    Harrison, T. E.
    McWilliam, A.
    Nelan, E. P.
    Patterson, R. J.
    Sarajedini, A.
    ASTROPHYSICAL JOURNAL, 2017, 835 (02):
  • [38] The most metal-poor galaxies
    D. Kunth
    G. Östlin
    The Astronomy and Astrophysics Review, 2000, 10 : 1 - 79
  • [39] Gaia and metal-poor stars
    Gustafsson, Bengt
    Stellar Evolution at Low Metallicity: Mass Loss, Explosions, Cosmology, 2006, 353 : 387 - 400
  • [40] Metal-poor spectroscopic binaries
    Latham, DW
    SPECTROSCOPICALLY AND SPATIALLY RESOLVING THE COMPONENTS OF CLOSE BINARY STARS, 2004, 318 : 276 - 282